Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(11): 3484-3489, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456741

RESUMO

A carbon nanotube (CNT) may facilitate near-frictionless water transport within it. In this work, we elucidate the slip flow characteristics for a CNT embedded in a silicon nitride matrix using the molecular dynamics (MD) method. We reveal that the wetting transparency of a CNT, the transmission of the membrane matrix wetting property over a CNT, cannot be ignored. Due to the effect of CNT wetting transparency, the orientation flip behavior of water molecules should be the primary cause of the entrance and exit losses, which is a dominant factor influencing the interfacial friction coefficient for the thin CNT membrane. The relationship between the friction coefficient and pore size follows a logarithmic function, which agrees well with the reported experimental data. Our findings bridge the gap between the MD prediction and experimental observation for water transport in a CNT membrane and provide a clear understanding of the mechanism behind its ultrafast flow performance.

2.
Small ; : e2308628, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087380

RESUMO

Vanadium-based phosphate cathode materials (e.g., K3V2(PO4)3) have attracted widespread concentration in cathode materials in potassium-ion batteries owing to their stable structure but suffer from low capacity and poor conductivity. In this work, an element doping strategy is applied to promote its electrochemical performance so that K3.2V2.8Mn0.2(PO4)4/C is prepared via a simple sol-gel method. The heterovalent Mn2+ is introduced to stimulated multiple electron reactions to improve conductivity and capacity, as well as interlayer spacing. Galvanostatic intermittent titration technique (GITT) and in situ X-ray diffraction results further confirm that Mn-doping in the original electrode can obtain superior electrode process kinetics and structural stability. The prepared K3.2V2.8Mn0.2(PO4)4/C exhibits a high-capacity retention of 80.8% after 1 500 cycles at 2 C and an impressive rate capability, with discharge capacities of 87.6 at 0.2 C and 45.4 mA h g-1 at 5 C, which is superior to the majority of reported vanadium-based phosphate cathode materials. When coupled K3.2V2.8Mn0.2(PO4)4/C cathode with commercial porous carbon (PC) anode as the full cell, a prominent energy density of 175 Wh kg-1 is achieved based on the total active mass. Overall, this study provides an effective strategy for meliorating the cycling stability and capacity of the polyanion cathodes for KIB.

3.
Heliyon ; 10(7): e28874, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623255

RESUMO

Objective: Here we aimed to explore the differences in individual gray matter (GM) networks at baseline in mild cognitive impairment patients who converted to Alzheimer's disease (AD) within 3 years (MCI-C) and nonconverters (MCI-NC). Materials and methods: Data from 461 MCI patients (180 MCI-C and 281 MCI-NC) were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). For each subject, a GM network was constructed using 3D-T1 imaging and the Kullback-Leibler divergence method. Gradient and topological analyses of individual GM networks were performed, and partial correlations were calculated to evaluate relationships among network properties, cognitive function, and apolipoprotein E (APOE) €4 alleles. Subsequently, a support vector machine (SVM) model was constructed to discriminate the MCI-C and MCI-NC patients at baseline. Results: The gradient analysis revealed that the principal gradient score distribution was more compressed in the MCI-C group than in the MCI-NC group, with scores for the left lingual gyrus, right fusiform gyrus and left middle temporal gyrus being increased in the MCI-C group (p < 0.05, FDR corrected). The topological analysis showed significant differences in nodal efficiency in four nodes between the two groups. Furthermore, the regional gradient scores or nodal efficiency were found to be significantly related to the neuropsychological test scores, and the left middle temporal gyrus gradient scores were positively associated with the number of APOE €4 alleles (r = 0.192, p = 0.002). Ultimately, the SVM model achieved a balanced accuracy of 79.4% in classifying MCI-C and MCI-NC patients (p < 0.001). Conclusion: The whole-brain GM network hierarchy in the MCI-C group was more compressed than that in the MCI-NC group, suggesting more serious cognitive impairments in the MCI-C group. The left middle temporal gyrus gradient scores were related to both cognitive function and APOE €4 alleles, thus serving as potential biomarkers distinguishing MCI-C from MCI-NC at baseline.

4.
Biomimetics (Basel) ; 9(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667260

RESUMO

Precise morphology acquisition for the variable wing leading edge is essential for its bio-inspired adaptive control. Therefore, this study proposes a morphological reconstruction method for the variable wing leading edge, utilizing the node curvature vectors-based curvature propagation method (NCV-CPM). By establishing a strain-arc curvature function, the method fundamentally mitigates the impact of surface curvature angle on curvature computation accuracy at sensing points. We introduce a technique that uses high-order curvature fitting functions to determine the curvature vectors of arc segment nodes. This method reduces cumulative errors in curvature computation linked to the linear interpolation-based curvature propagation method (LI-CPM) at unattached sensor positions. Integrating curvature-strain functions aids in wing leading-edge strain field reconstruction, supporting structural health monitoring. Additionally, a particle swarm algorithm optimizes the sensing point distribution, reducing network complexity. This study demonstrates significantly enhanced morphological reconstruction accuracy compared to those obtained with conventional LI-CPM.

5.
Materials (Basel) ; 17(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255527

RESUMO

Magnesium slag is a type of industrial solid waste produced during the production of magnesium metal. In order to gain a deeper understanding of the structure of magnesium slag, the composition and microstructure of magnesium slag were investigated by using characterization methods such as X-ray fluorescence, particle size analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. In addition, the state of Si occurrence in magnesium slag was analyzed using a solid-state nuclear magnetic resonance technique in comparison with granulated blast furnace slag. An inductively coupled plasma-optical emission spectrometer and scanning electron microscope with energy dispersive X-ray spectroscopy were used to characterize their cementitious behavior. The results show that the chemical composition of magnesium slag mainly includes 54.71% CaO, 28.66% SiO2 and 11.82% MgO, and the content of Al2O3 is much lower than that of granulated blast furnace slag. Compared to granulated blast furnace slag, magnesium slag has a larger relative bridging oxygen number and higher [SiO4] polymerization degree. The cementitious activity of magnesium slag is lower compared to that of granulated blast furnace slag, but it can replace part of the cement to obtain higher compressive strength. Maximum compressive strength can be obtained when the amount of magnesium slag replacing cement is 20%, where the 28-day compressive strength can be up to 45.48 MPa. This work provides a relatively comprehensive analysis of the structural characteristics and cementitious behavior of magnesium slag, which is conducive to the promotion of magnesium slag utilization.

6.
Antioxidants (Basel) ; 13(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397739

RESUMO

This study aims to investigate the impact of dietary supplementation with selenium yeast (SeY) and glycerol monolaurate (GML) on the transfer of antioxidative capacity between the mother and fetus during pregnancy and its underlying mechanisms. A total of 160 sows with similar body weight and parity of 3-6 parity sows were randomly and uniformly allocated to four groups (n = 40) as follows: CON group, SeY group, GML group, and SG (SeY + GML) group. Animal feeding started from the 85th day of gestation and continued to the day of delivery. The supplementation of SeY and GML resulted in increased placental weight and reduced lipopolysaccharide (LPS) levels in sow plasma, placental tissues, and piglet plasma. Furthermore, the redox balance and inflammatory markers exhibited significant improvements in the plasma of sows fed with either SeY or GML, as well as in their offspring. Moreover, the addition of SeY and GML activated the Nrf2 signaling pathway, while downregulating the expression of pro-inflammatory genes and proteins associated with inflammatory pathways (MAPK and NF-κB). Vascular angiogenesis and nutrient transportation (amino acids, fatty acids, and glucose) were upregulated, whereas apoptosis signaling pathways within the placenta were downregulated with the supplementation of SeY and GML. The integrity of the intestinal and placental barriers significantly improved, as indicated by the increased expression of ZO-1, occludin, and claudin-1, along with reduced levels of DLA and DAO with dietary treatment. Moreover, supplementation of SeY and GML increased the abundance of Christensenellaceae_R-7_group, Clostridium_sensus_stricto_1, and Bacteroidota, while decreasing levels of gut microbiota metabolites LPS and trimethylamine N-oxide. Correlation analysis demonstrated a significant negative relationship between plasma LPS levels and placental weight, oxidative stress, and inflammation. In summary, dietary supplementation of SeY and GML enhanced the transfer of antioxidative capacity between maternal-fetal during pregnancy via gut-placenta axis through modulating sow microbiota composition.

7.
Adv Sci (Weinh) ; 11(14): e2306936, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38298088

RESUMO

PtII based organometallic photosensitizers (PSs) have emerged as novel potent photodynamic inactivation (PDI) reagents through their enhanced intersystem crossing (ISC) processes. Currently, few PtII PSs have been investigated as antibacterial materials, with relatively poor performances reported and with structure-activity relationships not well described. Herein, a pair of configurational isomers are reported of Bis-BODIPY (4,4-difluoro-boradizaindacene) embedded PtII PSs. The cis-isomer (cis-BBP) displayed enhanced 1O2 generation and better bacterial membrane anchoring capability as compared to the trans-isomer (trans-BBP). The effective PDI concentrations (efficiency > 99.9%) for cis-BBP in Acinetobacter baumannii (multi-drug resistant (MDR)) and Staphylococcus aureus are 400 nM (12 J cm-2) and 100 nM (18 J cm-2), respectively; corresponding concentrations and light doses for trans-BBP in the two bacteria are 2.50 µM (30 J cm-2) and 1.50 µM (18 J cm-2), respectively. The 50% and 90% minimum inhibitory concentration (MIC50 and MIC90) ratio of trans-BBP to cis-BBP is 22.22 and 24.02 in A. baumannii (MDR); 21.29 and 22.36 in methicillin resistant S. aureus (MRSA), respectively. Furthermore, cis-BBP displays superior in vivo antibacterial performance, with acceptable dark and photoinduced cytotoxicity. These results demonstrate cis-BBP is a robust light-assisted antibacterial reagent at sub-micromolecular concentrations. More importantly, configuration of PtII PSs should be an important issue to be considered in further PDI reagents design.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Fármacos Fotossensibilizantes/farmacologia , Relação Estrutura-Atividade , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA