RESUMO
Deoxynivalenol contamination in feed and food, pervasive from growth, storage, and processing, poses a significant risk to dairy cows, particularly when exposed to a high-starch diet; however, whether a high-starch diet exacerbates these negative effects remains unclear. Therefore, we investigated the combined impact of deoxynivalenol and dietary starch on the production performance, rumen function, and health of dairy cows using metabolomics and 16 S rRNA sequencing. Our findings suggested that both high- and low-starch diets contaminated with deoxynivalenol significantly reduced the concentration of propionate, isobutyrate, valerate, total volatile fatty acids (TVFA), and microbial crude protein (MCP) concentrations, accompanied by a noteworthy increase in NH3-N concentration in vitro and in vivo (P < 0.05). Deoxynivalenol altered the abundance of microbial communities in vivo, notably affecting Oscillospiraceae, Lachnospiraceae, Desulfovibrionaceae, and Selenomonadaceae. Additionally, it significantly downregulated lecithin, arachidonic acid, valine, leucine, isoleucine, arginine, and proline metabolism (P < 0.05). Furthermore, deoxynivalenol triggered oxidative stress, inflammation, and dysregulation in immune system linkage, ultimately compromising the overall health of dairy cows. Collectively, both high- and low-starch diets contaminated with deoxynivalenol could have detrimental effects on rumen function, posing a potential threat to production performance and the overall health of cows. Notably, the negative effects of deoxynivalenol are more pronounced with a high-starch diet than a low-starch diet.
Assuntos
Microbiota , Leite , Tricotecenos , Feminino , Bovinos , Animais , Leite/metabolismo , Lactação/fisiologia , Rúmen/metabolismo , Dieta/veterinária , Amido/metabolismo , Ração Animal/análise , FermentaçãoRESUMO
Little is known about the transcriptomic plasticity and adaptive mechanisms of circulating tumor cells (CTCs) during hematogeneous dissemination. Here we interrogate the transcriptome of 113 single CTCs from 4 different vascular sites, including hepatic vein (HV), peripheral artery (PA), peripheral vein (PV) and portal vein (PoV) using single-cell full-length RNA sequencing in hepatocellular carcinoma (HCC) patients. We reveal that the transcriptional dynamics of CTCs were associated with stress response, cell cycle and immune-evasion signaling during hematogeneous transportation. Besides, we identify chemokine CCL5 as an important mediator for CTC immune evasion. Mechanistically, overexpression of CCL5 in CTCs is transcriptionally regulated by p38-MAX signaling, which recruites regulatory T cells (Tregs) to facilitate immune escape and metastatic seeding of CTCs. Collectively, our results reveal a previously unappreciated spatial heterogeneity and an immune-escape mechanism of CTC, which may aid in designing new anti-metastasis therapeutic strategies in HCC.
Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Heterogeneidade Genética , Evasão da Resposta Imune , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Células Neoplásicas Circulantes/imunologia , Idoso , Animais , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Metástase Neoplásica , Células Neoplásicas Circulantes/metabolismo , Prognóstico , RNA-Seq , Transcriptoma , Microambiente TumoralRESUMO
BACKGROUND & AIMS: Although the prognosis of patients with occult hepatitis B virus (HBV) infection (OBI) is usually benign, a small portion may undergo cirrhosis and subsequently hepatocellular carcinoma (HCC). We studied the mechanism of life-long Integration of virus DNA into OBI host's genome, of which may induce hepatocyte transformation. METHODS: We applied HBV capture sequencing on single cells from an OBI patient who, developed multiple HCC tumors and underwent liver resection in May 2013 at Tongji Hospital in China. Despite with the undetectable virus DNA in serum, we determined the pattern of viral integration in tumor cells and adjacent non-tumor cells and obtained the details of the viral arrangement in host genome, and furthermore the HBV integrated region in cancer genome. RESULTS: HBV captured sequencing of tissues and individual cells revealed that samples from multiple tumors shared two viral integration sites that could affect three host genes, including CSMD2 on chr1 and MED30/EXT1 on chr8. Whole genome sequencing further indicated one hybrid chromosome formed by HBV integrations between chr1 and chr8 that was shared by multiple tumors. Additional 50 poorly differentiated liver tumors and the paired adjacent non-tumors were evaluated and functional studies suggested up-regulated EXT1 expression promoted HCC growth. We further observed that the most somatic mutations within the tumor cell genome were common among the multiple tumors, suggesting that HBV associated, multifocal HCC is monoclonal in origin. CONCLUSION: Through analyzing the HBV integration sites in multifocal HCC, our data suggested that the tumor cells were monoclonal in origin and formed in the absence of active viral replication, whereas the affected host genes may subsequently contribute to carcinogenesis.
Assuntos
Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B , Hepatite B Crônica/complicações , Hepatite B Crônica/virologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Integração Viral , Biópsia , Carcinoma Hepatocelular/diagnóstico por imagem , Linhagem Celular Tumoral , Mapeamento Cromossômico , DNA Viral/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Haplótipos , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , N-Acetilglucosaminiltransferases/genética , Carga TumoralRESUMO
In the original publication of this article [1], Fig. 6 is wrong and the updated figure is shown below.