RESUMO
Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.
Assuntos
Genoma Humano , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Metilação de DNA , Leucemia Mieloide Aguda/genética , Genoma Humano/genética , Regiões Promotoras Genéticas , Elementos Facilitadores Genéticos , Inativação Gênica , Reprodutibilidade dos Testes , Sistemas CRISPR-Cas , Análise de Sequência , DNA (Citosina-5-)-Metiltransferases , Regulação Leucêmica da Expressão GênicaRESUMO
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs most of the carbon fixation on Earth. However, plant Rubisco is an intrinsically inefficient enzyme given its low carboxylation rate, representing a major limitation to photosynthesis. Replacing endogenous plant Rubisco with a faster Rubisco is anticipated to enhance crop photosynthesis and productivity. However, the requirement of chaperones for Rubisco expression and assembly has obstructed the efficient production of functional foreign Rubisco in chloroplasts. Here, we report the engineering of a Form 1A Rubisco from the proteobacterium Halothiobacillus neapolitanus in Escherichia coli and tobacco (Nicotiana tabacum) chloroplasts without any cognate chaperones. The native tobacco gene encoding Rubisco large subunit was genetically replaced with H. neapolitanus Rubisco (HnRubisco) large and small subunit genes. We show that HnRubisco subunits can form functional L8S8 hexadecamers in tobacco chloroplasts at high efficiency, accounting for â¼40% of the wild-type tobacco Rubisco content. The chloroplast-expressed HnRubisco displayed a â¼2-fold greater carboxylation rate and supported a similar autotrophic growth rate of transgenic plants to that of wild-type in air supplemented with 1% CO2. This study represents a step toward the engineering of a fast and highly active Rubisco in chloroplasts to improve crop photosynthesis and growth.
Assuntos
Nicotiana , Ribulose-Bifosfato Carboxilase , Nicotiana/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese/genética , Cloroplastos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Dióxido de Carbono/metabolismoRESUMO
BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.
Assuntos
Cério , Óxido Ferroso-Férrico , Geobacter , Platina , Cério/química , Cério/metabolismo , Geobacter/metabolismo , Catálise , Óxido Ferroso-Férrico/química , Platina/química , Oxirredução , Compostos Férricos/química , Compostos Férricos/metabolismoRESUMO
The rodent gut microbiota is a known reservoir of antimicrobial resistance, yet the distribution of antibiotic resistance genes (ARGs) within rodent cecal microbial communities and the specific bacterial species harboring these ARGs remain largely underexplored. This study employed high-throughput sequencing of 122 samples from five distinct rodent species to comprehensively profile the diversity and distribution of ARGs and to identify the bacterial hosts of these genes. A gene catalog of the rodent cecal microbiome was constructed, comprising 22,757,369 non-redundant genes. Analysis of the microbial composition and diversity revealed that Bacillota and Bacteroidota were the dominant bacterial phyla across different rodent species, with significant variations in species composition among the rodents. In total, 3703 putative antimicrobial resistance protein-coding genes were identified, corresponding to 392 unique ARG types classified into 32 resistance classes. The most enriched ARGs in the rodent cecal microbiome were associated with multidrug resistance, followed by glycopeptide and elfamycin antibiotics. Procrustes analysis demonstrated a correlation between the structure of the microbial community and the resistome. Metagenomic assembly-based host tracking indicated that most ARG-carrying contigs originated from the bacterial family Oscillospiraceae. Additionally, 130 ARGs showed significant correlations with mobile genetic elements. These findings provide new insights into the cecal microbiota and the prevalence of ARGs across five rodent species. Future research on a wider range of wild rodent species carrying ARGs will further elucidate the mechanisms underlying the transmission of antimicrobial resistance.
RESUMO
Maternal depression promotes maternal inflammation and the risk of neurodevelopmental disorder in offspring, but the role of inflammation on the association between depression and neurodevelopment in offspring has not been extensively studied in humans. This study aims to examine the mediating role of maternal inflammation on the relationship between maternal depression and neurodevelopment in infants. 146 mother-child pairs were identified from Tianjin Maternal and Child Health Education and Service Cohort (Tianjin MCHESC). Maternal depression was investigated by the Center for Epidemiologic Studies Depression Scale and the Edinburgh Postnatal Depression Scale, and depressive trajectories were identified by latent class growth analysis. Inflammatory biomarkers in the three trimesters were assessed with enzyme-linked immunoassay. The Children Neuropsychological and Behavior Scale-Revision 2016 was used to measure neurodevelopment in infants. Principal component analysis was performed to identify inflammatory condition. Stepwise multiple linear regression analysis and mediation analysis were used to identify association among maternal depression, maternal inflammation and neurodevelopment in infants. Offspring in the low and moderate maternal depression groups exhibited higher adaptive behavior development quotient than those in the high maternal depression group. Higher maternal c-reactive protein level and higher inflammatory level in acute-phase of inflammation in the first trimester, and moderate maternal depression were associated with lower adaptive behavior quotients of infants. Inflammatory level in acute-phase of inflammation in the first trimester significantly mediated the association between maternal depression and adaptive behavior development of infants, with explaining 11.85% of the association. Maternal depression could impair adaptive behavior development in infants by inflammation.
RESUMO
SLAM (Simultaneous Localization and Mapping) based on 3D LiDAR (Laser Detection and Ranging) is an expanding field of research with numerous applications in the areas of autonomous driving, mobile robotics, and UAVs (Unmanned Aerial Vehicles). However, in most real-world scenarios, dynamic objects can negatively impact the accuracy and robustness of SLAM. In recent years, the challenge of achieving optimal SLAM performance in dynamic environments has led to the emergence of various research efforts, but there has been relatively little relevant review. This work delves into the development process and current state of SLAM based on 3D LiDAR in dynamic environments. After analyzing the necessity and importance of filtering dynamic objects in SLAM, this paper is developed from two dimensions. At the solution-oriented level, mainstream methods of filtering dynamic targets in 3D point cloud are introduced in detail, such as the ray-tracing-based approach, the visibility-based approach, the segmentation-based approach, and others. Then, at the problem-oriented level, this paper classifies dynamic objects and summarizes the corresponding processing strategies for different categories in the SLAM framework, such as online real-time filtering, post-processing after the mapping, and Long-term SLAM. Finally, the development trends and research directions of dynamic object filtering in SLAM based on 3D LiDAR are discussed and predicted.
RESUMO
Eddy current sensors are increasingly being used to measure the dynamic blade tip clearance in turbines due to their robust anti-interference capabilities and non-contact measurement advantages. However, the current research primarily focuses on enhancing the performance of eddy current sensors themselves, with few studies investigating the influence of turbine rotor parameters on the measurements taken by these sensors for dynamic blade tip clearance. Hence, this paper addresses this gap by using COMSOL Multiphysics 6.2 software to establish a finite model with circuit interfaces. Additionally, the model's validity was verified through experiments. This model is used to simulate the voltage output of the sensor and the measurement of dynamic blade tip clearance under various rotor parameters. The results indicate that the length and number of blades, as well as the hub radius, significantly affect the sensor voltage output in comparison to rotation speed. Furthermore, we show that traditional static calibration methods are inadequate for measuring dynamic blade tip clearance using eddy current sensors. Instead, it is demonstrated that incorporating rotor parameters into the calibration of eddy current sensors can enhance the accuracy of dynamic blade tip clearance measurements.
RESUMO
Given the increasing application of eddy current sensors for measuring turbine tip clearance in aero engines, enhancing the performance of these sensors is essential for improving measurement accuracy. This study investigates the influence of coil shape on the measurement performance of planar eddy current sensors and identifies an optimal coil shape to enhance sensing capabilities. To achieve this, various coil shapes-specifically circular, square, rectangular wave, and triangular wave-were designed and fabricated, featuring different numbers of turns for the experiment at room temperature. By employing a method for calculating coil inductance, the performance of each sensor was evaluated based on key metrics: measurement range, sensitivity, and linearity. Experimental results reveal that the square coil configuration outperforms other shapes in overall measurement performance. Notably, the square coil demonstrated a measurement range of 0 mm to 8 mm, a sensitivity of 0.115685 µH/mm, and an impressive linearity of 98.41% within the range of 0 mm to 2 mm. These findings indicate that the square coil configuration enhances measurement capabilities. The conclusions drawn from this study provide valuable insights for selecting coil shapes and optimizing the performance of planar eddy current sensors, thereby contributing to the advancement of turbine tip clearance measurement techniques in aero engines.
RESUMO
Red mud is a promising candidate for promoting the incineration of Refuse Derived Fuel (RDF) and stabilizing the resulting incineration ash. The combustion conditions, notably temperature, significantly steers the migration and transformation of harmful metal components during combustion, and ultimately affect their retention and speciation in the ash residue. The study attempted to investigate the effect of co-combustion temperature on the enrichment and stability of Cr, Ni, Cu, Zn, Cd and Pb within bottom ashes, and to reveal the underlined promotion mechanism of red mud addition. As temperature increased, red mud's active components formed a robust matrix, helping the formation, melting, and vitrification of silicates and aluminosilicates in the bottom ashes. The process significantly contributed to the encapsulation and stabilization of heavy metals such as Ni, Cu, Zn, Cd, and Pb, with their residual fractions ascending to 71.37%, 55.75%, 74.78%, 84.24%, and 93.54%, respectively. Conversely, high temperatures led to an increase in the proportion of Cr in the extremely unstable acid-soluble fraction of the bottom ashes, reaching 31.52%, posing a heightened risk of environmental migration. Considering the stability of heavy metals in the bottom ashes and the combustion characteristics, 800 °C is identified as the optimal temperature for the co-combustion of RDF and red mud, balancing efficiency and environmental safety. The findings will provide valuable insights for the co-utilization strategy of RDF and red mud, contributing to more informed decision-making in waste-to-energy processes.
Assuntos
Incineração , Metais Pesados , Temperatura , Metais Pesados/química , Metais Pesados/análise , Cinza de Carvão/química , Eliminação de ResíduosRESUMO
Low mass transfer efficiency and unavoidable matrix effects seriously limit the development of rapid and accurate determination of biosensing systems. Herein, we have successfully constructed an ultra-rapid nanoconfinement-enhanced fluorescence clinical detection platform based on machine learning (ML) and DNA xerogel "probe", which was performed by detecting neutrophil gelatinase-associated lipocalin (NGAL, protein biomarker of acute kidney injury). By regulating pore sizes of the xerogels, the transfer of NGAL in xerogels can approximate that in homogeneous solution. Due to electrostatic attraction of the pore entrances, NGAL rapidly enriches on the surface and inside the xerogels. The reaction rate of NGAL and aptamer cross-linked in xerogels is also accelerated because of the nanoconfinement effect-induced increasing reactant concentration and the enhanced affinity constant KD between reactants, which can be promoted by â¼667-fold than that in bulk solution, thus achieving ultra-rapid detection (ca. 5 min) of human urine. The platform could realize one-step detection without sample pretreatments due to the antiligand exchange effect on the surface of N-doped carbon quantum dots (N-CQDs) in xerogels, in which ligand exchange between -COOH and underlying interfering ions in urine will be inhibited due to higher adsorption energy of -COOH on the N-CQD surface relative to the interfering ions. Based on the ML-extended program, the real-time analysis of the urine fluorescence spectra can be completed within 2 s. Interestingly, by changing DNA, aptamer sequences, or xerogel fluorescence intensities, the detection platform can be customized for targeted diseases.
Assuntos
Injúria Renal Aguda , Pontos Quânticos , Humanos , Lipocalina-2 , Fluorescência , Injúria Renal Aguda/diagnóstico , DNA , Oligonucleotídeos , ÍonsRESUMO
An isolate, designated CFH 74404T, was recovered from a hot spring in Tengchong, Yunnan province, PR China. Phylogenetic analysis indicated that the isolate belongs to the family Thermomicrobiaceae and showed the highest 16S rRNA gene sequence similarity to Thermorudis peleae KI4T (93.6â%), Thermorudis pharmacophila WKT50.2T (93.1â%), Thermomicrobium roseum DSM 5159T (92.0â%) and Thermomicrobium carboxidum KI3T (91.7â%). The average amino acid identity and average nucleotide identity values between strain CFH 74404T and the closest relatives were 42.0-75.9â% and 67.0-77.3â%, respectively. Cells of strain CFH 74404T stained Gram-positive and were aerobic, non-motile and short rod-shaped. Growth occurred at 20-65 °C (optimum, 55 °C), pH 6.0-8.0 (optimum, pH 7.0) and with up to 2.0â% (w/v) NaCl (optimum 0-1.0â%, w/v). The predominant respiratory quinone was MK-8. The major fatty acids (>10â%) were C18â:â0 (50.8â%) and C20â:â0 (16.8â%). The polar lipid profile of strain CFH 74404T included diphosphatidylglycerol, four unidentified phosphoglycolipids, phosphatidylinositol and three unidentified glycolipids. The G+C content of the genomic DNA was determined to be 67.1 mol% based on the draft genome sequence. On the basis of phenotypic, phylogenetic and genotypic analyses, it is concluded that strain CFH 74404T represents a new species of a novel genus Thermalbibacter of the family Thermomicrobiaceae, for which the name Thermalbibacter longus gen. nov., sp. nov. is proposed. The type strain is CFH 74404T (=KCTC 62930T=CGMCC 1.61585T).
Assuntos
Ácidos Graxos , Fontes Termais , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , China , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNARESUMO
The use of biochar materials as catalysts to activate persulfate (PS) for the degradation of antibiotics has attracted much attention. In this study, a carbonaceous material (Cu/Zn-SBC) was prepared from sewage sludge by hydrothermal modification. The efficiency of PS activation by Cu/Zn-SBC was investigated using tetracycline (TC) as the model antibiotic. In the Cu/Zn-SBC + PS system, the TC removal rate reached 90.13% at 10 min and exceeded 99% within 4 h. This not only met the requirement of removing large amounts of pollutants in a short time but also achieved the complete removal of pollutants in the subsequent time. Additionally, the Cu/Zn-SBC + PS system was found to be dominated by radical and nonradical pathways. Cu, hydroxyl and carboxyl groups on the surface of Cu/Zn-SBC promoted the production of free radicals and non-free radicals. Under several changes in reaction conditions and water environment factors, the TC removal rate remained above 85% within 10 min. Furthermore, the removal rate of TC was still 85.79% when Cu/Zn-SBC combined with PS was reused twice and 77.14% when reused four times. This study provides an ideal solution for the treatment of sewage sludge, and offers a stable and efficient material for removing antibiotics from wastewater.
Assuntos
Antibacterianos , Poluentes Químicos da Água , Esgotos , Poluentes Químicos da Água/análise , Carvão Vegetal , TetraciclinaRESUMO
BACKGROUND: Gene therapy for lung cancer has emerged as a novel tumor-combating strategy for its superior tumor specificity, low systematical toxicity and huge clinical translation potential. Especially, the applications of microRNA shed led on effective tumor ablation by directly interfering with the crucial gene expression, making it one of the most promising gene therapy agents. However, for lung cancer therapy, the microRNA treatment confronted three bottlenecks, the poor tumor tissue penetration effect, the insufficient lung drug accumulation and unsatisfied gene transfection efficiency. To address these issues, an inhalable RGD-TAT dual peptides-modified cationic liposomes loaded with microRNA miR-34a and gap junction (GJ) regulation agent all-trans retinoic acid (ATRA) was proposed, which was further engineered into dry powder inhalers (DPIs). RESULTS: Equipped with a rough particle surface and appropriate aerodynamic size, the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs were expected to deposit into the deep lung and reach lung tumor lesions guided by targeting peptide RGD. Assisted by cellular transmembrane peptides TAT, the RGD-TAT-CLPs/ARTA@miR-34a was proven to be effectively internalized by cancer cells, enhancing gene transfection efficiency. Then, the GJ between tumor cells was upregulated by ARTA, facilitating the intercellular transport of miR-34a and boosting the gene expression in the deep tumor. CONCLUSION: Overall, the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs could enhance tumor tissue penetration, elevate lung drug accumulation and boost gene transfection efficiency, breaking the three bottlenecks to enhancing tumor elimination in vitro and in vivo. We believe that the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs could serve as a promising pulmonary gene delivery platform for multiple lung local disease treatments.
Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Lipossomos , Neoplasias Pulmonares/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , Pulmão/metabolismo , Oligopeptídeos , Junções Comunicantes/metabolismo , Genes Neoplásicos , Linhagem Celular TumoralRESUMO
While the mechanism of general anesthesia has been extensively studied, the underlying neural circuitry has yet to be fully understood. The parabrachial nucleus (PBN) plays a crucial role in modulating wakefulness and promoting arousal from general anesthesia. However, the specific role of PBN projections in the process of general anesthesia remains unclear. In this study, we bilaterally injected AAV-associated viruses encoding excitatory or inhibitory optogenetic probes into the PBN and implanted optical fibers in the LH or BF area. After four weeks, we optogenetically activated or inhibited the PBN-LH and PBN-BF pathways under 1.5 vol% isoflurane. We calculated the time it took for anesthesia induction and emergence, simultaneously monitoring changes in the burst-suppression ratio using electroencephalogram recording. Our findings indicate that optogenetic activation of the PBN-LH and PBN-BF projections plays a significant role in promoting both cortical and behavioral emergence from isoflurane inhalation, without significantly affecting the induction time. Conversely, photoinhibition of these pathways prolonged the recovery time, with no notable difference observed during the induction phase.In summary, our results demonstrate that the PBN-LH and PBN-BF pathways are crucial for promoting arousal from isoflurane general anesthesia, but do not have a pronounced impact on the induction phase.
Assuntos
Anestésicos Inalatórios , Prosencéfalo Basal , Isoflurano , Núcleos Parabraquiais , Camundongos , Animais , Isoflurano/farmacologia , Anestésicos Inalatórios/farmacologia , Região Hipotalâmica Lateral , Optogenética , Anestesia GeralRESUMO
Real-time and accurate bucket pose estimation plays a vital role in improving the intelligence level of mining excavators, as the bucket is a crucial component of the excavator. Existing methods for bucket pose estimation are realized by installing multiple non-visual sensors. However, these sensors suffer from cumulative errors caused by loose connections and short service lives caused by strong vibrations. In this paper, we propose a method for bucket pose estimation based on deep neural network and registration to solve the large registration error problem caused by occlusion. Specifically, we optimize the Point Transformer network for bucket point cloud semantic segmentation, significantly improving the segmentation accuracy. We employ point cloud preprocessing and continuous frame registration to reduce the registration distance and accelerate the Fast Iterative Closest Point algorithm, enabling real-time pose estimation. By achieving precise semantic segmentation and faster registration, we effectively address the problem of intermittent pose estimation caused by occlusion. We collected our own dataset for training and testing, and the experimental results are compared with other relevant studies, validating the accuracy and effectiveness of the proposed method.
RESUMO
BACKGROUND: Depressed patients are often accompanied with constipation symptoms, and vice versa. However, the underlying mechanisms of such a bidirectional correlation have remained elusive. We aim to reveal the possible correlations between depression and constipation from the perspectives of gut microbiome and plasma metabolome. METHODS: We constructed the depressed model and the constipated model of rats, respectively. First, we measured the locomotor activity status and the gastrointestinal functions of rats. And then, nuclear magnetic resonance plasma metabolomics was applied to reveal the shared and the unique metabolites of depression and constipation. In addition, 16 S ribosomal RNA gene sequencing was used to detect the impacts of constipation and depression on gut microbiota of rats. Finally, a multiscale and multifactorial network, that is, the 'phenotypes - differential metabolites - microbial biomarkers' integrated network, was constructed to visualise the mechanisms of connections between depression and constipation. RESULTS: We found that spontaneous locomotor activity and gastrointestinal functions of both depressed rats and constipated rats significantly decreased. Further, eight metabolites and 14 metabolites were associated depression and constipation, respectively. Among them, seven metabolites and four metabolic pathways were shared by constipation and depression, mainly perturbing energy metabolism and amino acid metabolism. Additionally, depression and constipation significantly disordered the functions and the compositions of gut microbiota of rats, and decreased the ratio of Firmicutes to Bacteroidetes. CONCLUSION: The current findings provide multiscale and multifactorial perspectives for understanding the correlations between depression and constipation, and demonstrate new mechanisms of comorbidity of depression and constipation.
Assuntos
Depressão , Microbiota , Ratos , Humanos , Animais , Metaboloma , Metabolômica , Constipação IntestinalRESUMO
A novel Gram-stain-negative, non-motile, short rod-shaped and aerobic bacterial strain, designated as CFH 74456 T, was isolated from sediment of a hot spring, Tengchong, Yunnan Province, south-western China. Growth occurred at 20-53 ºC (optimum 45 ºC), pH 7.0-9.0 (optimum pH 8.0) and up to 2.0% (w/v) NaCl (optimum 0-1.0%, w/v). The predominant respiratory quinone was ubiquinone 10 (Q-10). The major fatty acids (> 10%) were C17:1 ω6c (17.9%) and summed feature 8 (38.6%). The polar lipid profile of strain CFH 74456 T was identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid, three unidentified glycolipids and three unidentified polar lipids. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain CFH 74456 T belongs to the genus Qipengyuania, and was most closely related to Qipengyuania sediminis CGMCC 1.12928 T (95.7%). The draft genome size of the isolate was 2.29 Mb with G + C content of 68.5%. The amino acid identity, average nucleotide identity and the digital DNA-DNA hybridization values between strain CFH 74456 T and the closest relatives ranged from 67.0 to 67.9%, 73.0 to 74.2% and 18.2-19.3%, respectively. On the basis of phenotypic, phylogenetic and genotypic analyses, it is concluded that strain CFH 74456 T represents a new species of the genus Qipengyuania, for which the name Qipengyuania thermophila sp. nov. is proposed. The type strain is CFH 74456 T (= KCTC 62921 T = CCTCC AB 2018237 T).
Assuntos
Fontes Termais , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fontes Termais/microbiologia , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
A novel actinobacterium, designated strain CFH 90414T, was isolated from sediment sampled at a saline lake in Yuncheng, Shanxi, PR China. The taxonomic position of the strain was investigated by using a polyphasic approach. Cells of strain CFH 90414T were Gram-reaction-positive, aerobic and non-motile. Growth occured at 4-40 °C, pH 5.0-9.0 and in the presence of up to 0-3.0â% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CFH 90414T was a member of the genus Agromyces. The 16S rRNA gene sequence similarity analysis indicated that strain CFH 90414T was most closely related to Agromyces italicus JCM 14320T (98.07â%) and Agromyces lapidis JCM 14321T (97.18â%). The whole genome of CFH 90414T was 3.64 Mb, and showed a G+C content of 71.5 mol%. The average nucleotide identity (ANI) values and digital DNA-DNA hybridization (dDDH) values between CFH 90414T and the other species of the genus Agromyces were found to be low (ANI <78.99â% and dDDH <22.9â%). The whole-cell sugars were rhamnose, mannose, ribose, glucose and galactose. The isolate contained l-2,4-diaminobutyric acid, d-alanine, d-glutamic acid and glycine in the cell-wall peptidoglycan. The predominant menaquinone was MK-12. The major cellular fatty acids were anteiso-C15â:â0, anteiso-C17â:â0 and iso-C16â:â0. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol and an unidentiï¬ed glycolipid. On the basis of phenotypic, genotypic and phylogenetic data, strain CFH 90414T is considered to represent a novel species of the genus Agromyces, for which the name Agromyces agglutinans sp. nov. is proposed. The type strain is CFH 90414T (=DSM 105966T=KCTC 49062T).
Assuntos
Actinobacteria/classificação , Ácidos Graxos , Sedimentos Geológicos/microbiologia , Lagos , Filogenia , Águas Salinas , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Lagos/microbiologia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/químicaRESUMO
INTRODUCTION: Neuropathic pain (NP) is one of the most severe chronic pain types. In recent years, more and more studies have shown that long noncoding RNA (LncRNA) plays a key role in a variety of human diseases, including NP. However, the role of LncRNA prostate cancer-associated transcript 19 (PCAT19) in NP and its specific mechanism remain unclear. METHODS: A chronic constrictive injury (CCI) rat model was established. Rat paw withdrawal threshold and paw withdrawal latency were used to evaluate the neuronal pain behavior of rats in this model. mRNA expression of PCAT19, neuroinflammatory factor, microRNA (miR)-182-5p, and Jumonji domain containing 1A (JMJD1A) were detected by quantitative real-time PCR. ELISA analysis was used to detect inflammatory factor protein expression. Dual-luciferase reporter assay was used to evaluate the targeting relationship between genes. RESULTS: PCAT19 was continuously upregulated in CCI rats. miR-182-5p was the target of PCAT19, and miR-182-5p was increased after PCAT19 knockdown. NP behaviors such as mechanical ectopic pain and thermal hyperalgesia as well as neuroinflammation can be reduced by knocking down PCAT19. However, the injection of miR-182-5p antagomir significantly reversed the level of the NP behaviors and neuroinflammation caused by PCAT19 knockdown. Besides, dual-luciferase reporter assay showed that JMJD1A was the target gene of miR-182-5p. The level of JMJD1A in CCI rats increased with time. After PCAT19 knockdown, JMJD1A was significantly decreased, but inhibition of miR-182-5p can reverse its levels. CONCLUSION: This study shows that PCAT19 plays a role in NP by targeting the miR-182-5p/JMJD1A axis, and PCAT19 can be used as a new therapeutic target for NP.
Assuntos
MicroRNAs , Neuralgia , RNA Longo não Codificante , Animais , Constrição , Masculino , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Giardia duodenalis has a wide range of host species and is a common causative agent of diarrheal disease in humans and animals. This study conducted a systematic review and meta-analysis to evaluate the pooled prevalence of Giardia among dogs in China. We extracted 33 studies related to the prevalence of G. duodenalis in dogs, with samples taken from 2001 to 2021. The random-effect model was used to calculate pooled prevalence estimates with 95% confidence intervals, and the analyzed data were from 14 provinces in China. The estimated overall prevalence of G. duodenalis among dogs in China was 11.2%. The prevalence of Giardia was significantly higher in Northwestern China (35.7%) than in other regions. The prevalence in 2010 or later (11.8%) was significantly higher than in 2010 or before (6.9%). The estimated prevalence detected by microscopy (9.3%) was lower than molecular (12.3%) and serological (14.3%) ones. The prevalence was higher in dogs <1 year of age (12.2%) than that >1 year (5.4%). Among the genotype groups, the positive rate of assemblage A (5.2%) was significantly higher than that of other assemblages. Depending on the dog' type, the prevalence of G. duodenalis in stray dogs (3.5%) was lower than that in pet dogs (6.7%) and intensively breeding dogs (11.8%). In addition, no correlation was found between Giardia positive rate and the dogs' gender (p > 0.05). We also analyzed the effects of different geographic factor subgroups (longitude, latitude, precipitation, temperature, humidity, and altitude) on the prevalence of G. duodenalis in dogs in China. The results showed that giardiasis was widespread in dogs in China. It is suggested that corresponding control scheme and effective management measures should be formulated and applied to reduce the transmission of G. duodenalis according to the difference in geographical conditions in different areas.