Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806197

RESUMO

The acetylcholinesterase (AChE) inhibitors are the main drugs for symptomatic treatment of neurodegenerative disorders like Alzheimer's disease. A recently designed, synthesized and tested hybrid compound between the AChE inhibitor galantamine (GAL) and the antioxidant polyphenol curcumin (CU) showed high AChE inhibition in vitro. Here, we describe tests for acute and short-term toxicity in mice as well as antioxidant tests on brain homogenates measured the levels of malondialdehide (MDA) and glutathione (GSH) and in vitro DPPH, ABTS, FRAP and LPO inhibition assays. Hematological and serum biochemical analyses were also performed. In the acute toxicity tests, the novel AChE inhibitor given orally in mice showed LD50 of 49 mg/kg. The short-term administration of 2.5 and 5 mg/kg did not show toxicity. In the ex vivo tests, the GAL-CU hybrid performed better than GAL and CU themselves; in a dose of 5 mg/kg, it demonstrates 25% reduction in AChE activity, as well as a 28% and 73% increase in the levels of MDA and GSH, respectively. No significant changes in blood biochemical data were observed. The antioxidant activity of 4b measured ex vivo was proven in the in vitro tests. In the ABTS assay, 4b showed radical scavenging activity 10 times higher than the positive control butylhydroxy toluol (BHT). The GAL-CU hybrid is a novel non-toxic AChE inhibitor with high antioxidant activity which makes it a prospective multitarget drug candidate for treatment of neurodegenerative disorders.


Assuntos
Encéfalo/metabolismo , Inibidores da Colinesterase , Curcumina , Galantamina , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Encéfalo/patologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Curcumina/análogos & derivados , Curcumina/química , Curcumina/farmacologia , Modelos Animais de Doenças , Feminino , Galantamina/análogos & derivados , Galantamina/química , Galantamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
2.
Molecules ; 25(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717861

RESUMO

Galantamine (GAL) and curcumin (CU) are alkaloids used to improve symptomatically neurodegenerative conditions like Alzheimer's disease (AD). GAL acts mainly as an inhibitor of the enzyme acetylcholinesterase (AChE). CU binds to amyloid-beta (Aß) oligomers and inhibits the formation of Aß plaques. Here, we combine GAL core with CU fragments and design a combinatorial library of GAL-CU hybrids as dual-site binding AChE inhibitors. The designed hybrids are screened for optimal ADME properties and BBB permeability and docked on AChE. The 14 best performing compounds are synthesized and tested in vitro for neurotoxicity and anti-AChE activity. Five of them are less toxic than GAL and CU and show activities between 41 and 186 times higher than GAL.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/síntese química , Curcumina/química , Galantamina/síntese química , Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Técnicas de Química Combinatória , Galantamina/química , Galantamina/farmacologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 23(17): 5382-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26260334

RESUMO

The inhibitors of acetylcholinesterase are the main therapy against Alzheimer's disease. Among them, galantamine is the best tolerated and the most prescribed drug. In the present study, 41 galantamine derivatives with known acetylcholinesterase inhibitory activities expressed as IC50 were selected from the literature and docked into a recombinant human acetylcholinesterase by GOLD. A linear relationship between GoldScores and pIC50 values was found and used to design and predict novel galantamine derivatives with indole moiety in the side chain. The four best predicted compounds were synthesized and tested for inhibitory activity. All of them were between 11 and 95 times more active than galantamine. The novel galantamine derivatives with indole moiety have dual site binding to the enzyme--the galantamine moiety binds to the catalytic anionic site and the indole moiety binds to peripheral anionic site. Additionally, the indole moiety of one of the novel inhibitors binds in a region, close to the peripheral anionic site of the enzyme, where the Ω-loop of amyloid beta peptide adheres to acetylcholinesterase. This compound emerges as a promising lead compound for multi-target anti-Alzheimer therapy not only because of the strong inhibitory activity, but also because it is able to block the amyloid beta deposition on acetylcholinesterase.


Assuntos
Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Galantamina/análogos & derivados , Galantamina/farmacologia , Indóis/química , Indóis/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/síntese química , Desenho de Fármacos , Galantamina/síntese química , Humanos , Indóis/síntese química , Liliaceae/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
4.
Food Chem Toxicol ; 153: 112268, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34015423

RESUMO

The Tanacetum genus is a big treasure with the presence of biologically-active compounds and members of this genus are widely used for the treatment of several diseases in traditional medicine system. Considering this fact, we aimed to analyze the extracts from Tanacetum vulgare L. in case of chemical profiles and biological effects. Chemical characterization was performed by using UHPLC-HRMS technique and showed the presence of several phytochemical groups (107 compounds were identified, including phenolic acids, flavonoids, terpenoids and fatty acids. Biological abilities were examined by using antioxidant (DPPH, ABTS, FRAP, CUPRAC, metal chelating and phosphomolybdenum assays) and enzyme inhibition (tyrosinase, amylase, glucosidase and cholinesterase) properties. Pharmaco-toxicological investigations were also performed with the aim to identify limits of biocompatibility, anti-oxidant and neuromodulatory effects, in hypothalamic HypoE22 cells. A bioinformatic analysis was also carried to unravel the putative protein-targets for the observed biological effects. Generally, the tested hexane and hydroalcoholic extracts displayed stronger activities in antioxidant and enzyme inhibitory assays, when compared with water. In addition, multivariate analysis was performed to understand the differences in both solvents and plant parts and we clearly observed the separation of these parameters. The extracts (10 µg/mL) also stimulated DAT and inhibited TNFα and BDNF gene expression, in HypoE22 cells. In parallel, the extracts were also able to stimulate norepinephrine release from this cell line. By contrast, in the concentration range 50-100 µg/mL, the extracts reduced the HypoE22 viability, thus demonstrating cytotoxicity at concentrations 5-10 fold higher compared to those effective as neuromodulatory. Our observations manifested that T. vulgare has several beneficial effects and it can be used as a potential natural raw material for designing further health-promoting applications in nutraceutical, cosmeceutical, and pharmaceutical areas.


Assuntos
Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Tanacetum/química , Animais , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/toxicidade , Artemia/efeitos dos fármacos , Linhagem Celular , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Etanol/química , Flores/química , Hexanos/química , Análise Multivariada , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/toxicidade , Componentes Aéreos da Planta/química , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Caules de Planta/química , Mapas de Interação de Proteínas , Ratos , Solventes/química , Água/química
5.
Mol Inform ; 35(6-7): 278-85, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27492242

RESUMO

The enzyme acetylcholinesterase is a key target in the treatment of Alzheimer's disease because of its ability to hydrolyze acetylcholine via the catalytic binding site and to accelerate the aggregation of amyloid-ß peptide via the peripheral anionic site (PAS). Using docking-based predictions, in the present study we design 20 novel galantamine derivatives with alkylamide spacers of different length ending with aromatic fragments. The galantamine moiety blocks the catalytic site, while the terminal aromatic fragments bind in PAS. The best predicted compounds are synthesized and tested for acetylcholinesterase inhibitory activity. The experimental results confirm the predictions and show that the heptylamide spacer is of optimal length to bridge the galantamine moiety bound in the catalytic site and the aromatic fragments interacting with PAS. Among the tested terminal aromatic fragments, the phenethyl substituent is the most suitable for binding in PAS.


Assuntos
Inibidores da Colinesterase/química , Galantamina/análogos & derivados , Galantamina/química , Acetilcolinesterase/química , Domínio Catalítico , Desenho de Fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA