Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 122(19): 15450-15500, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35894820

RESUMO

Phase transitions can occur in certain materials such as transition metal oxides (TMOs) and chalcogenides when there is a change in external conditions such as temperature and pressure. Along with phase transitions in these phase change materials (PCMs) come dramatic contrasts in various physical properties, which can be engineered to manipulate electrons, photons, polaritons, and phonons at the nanoscale, offering new opportunities for reconfigurable, active nanodevices. In this review, we particularly discuss phase-transition-enabled active nanotechnologies in nonvolatile electrical memory, tunable metamaterials, and metasurfaces for manipulation of both free-space photons and in-plane polaritons, and multifunctional emissivity control in the infrared (IR) spectrum. The fundamentals of PCMs are first introduced to explain the origins and principles of phase transitions. Thereafter, we discuss multiphysical nanodevices for electronic, photonic, and thermal management, attesting to the broad applications and exciting promises of PCMs. Emerging trends and valuable applications in all-optical neuromorphic devices, thermal data storage, and encryption are outlined in the end.

2.
Nano Lett ; 22(13): 5607-5614, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771963

RESUMO

Negative reflection and negative refraction are exotic phenomena that can be achieved by platforms such as double-negative metamaterial, hyperbolic metamaterial, and phase-discontinuity metasurface. Recently, natural biaxial van der Waals (vdW) materials, which support extremely anisotropic, low-loss, and highly confined polaritons from infrared to visible regime, are emerging as promising candidates for planar reflective and refractive optics. Here, we introduce three degrees of freedom, namely interface, crystal direction, and electric tunability, to manipulate the reflection and refraction of the polaritons. With broken in-plane symmetry contributed by the interface and crystal direction, distinguished reflection, and refraction such as negative and backward reflection, positive and negative refraction could exist simultaneously and exhibit high tunability. The numerical simulations show good consistency with the theoretical analysis. Our findings provide a robust recipe for the realization of negative reflection and refraction in biaxial vdW materials, paving the way for the polaritonics and on-chip integrated circuits.

3.
Nano Lett ; 22(10): 4260-4268, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35442697

RESUMO

Polaritons in polar biaxial crystals with extreme anisotropy offer a promising route to manipulate nanoscale light-matter interactions. The dynamic modulation of their dispersion is of great significance for future integrated nano-optics but remains challenging. Here, we report tunable topological transitions in biaxial crystals enabled by interface engineering. We theoretically demonstrate such tailored polaritons at the interface of heterostructures between graphene and α-phase molybdenum trioxide (α-MoO3). The interlayer coupling can be modulated by both the stack of graphene and α-MoO3 and the magnitude of the Fermi level in graphene enabling a dynamic topological transition. More interestingly, we found that the wavefront transition occurs at a constant Fermi level when the thickness of α-MoO3 is tuned. Furthermore, we also experimentally verify the hybrid polaritons in the graphene/α-MoO3 heterostructure with different thicknesses of α-MoO3. The interface engineering offers new insights into optical topological transitions, which may shed new light on programmable polaritonics, energy transfer, and neuromorphic photonics.

4.
Opt Express ; 29(6): 8490-8497, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820295

RESUMO

Metal nanomaterials have been widely used to generate photoacoustic (PA) signals because of their high optical absorption characteristics. However, the PA conversion efficiency of metal nanomaterials is limited by the single-wavelength absorption at the resonant peak. To mitigate this issue, a three-layer ultrathin film containing a thin PDMS layer sandwiched between two ultrathin chromium films is proposed. This kind of film structure can attain high optical absorbance (>80%) through the visible light range (450-850 nm). The optical absorption characteristics can be easily modulated by varying the thickness of the PDMS layer. Under the same excitation condition, the PA signal generated by this film structure is twice that of an only Cr film and three times that of an only Au film. This film structure is easily fabricated and can operate with lasers having different central wavelengths or even white light sources, leading to its applications in many fields, including photoacoustic communications and audio transducers.

5.
Nat Commun ; 15(1): 7047, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147731

RESUMO

Anisotropic optical crystals can exhibit a hyperbolic response within the Reststrahlen band (RB) and support directional polaritonic propagations when interacting with light. Most of the reported low-symmetry optical crystals showcase the evolution from hyperbolic to elliptic dispersion topologies, largely owing to their adjacent RBs being either overlapped or separated. Here, we report an exceptional Reststrahlen point (ERP) in rare-earth oxyorthosilicate Y2SiO5, at which two neighboring RBs almost kiss each other. Consequently, we observe the direct hyperbolic-to-hyperbolic topological transition: the hyperbolic branches close and reopen along with the rotating transverse axis (TA). At such ERP, the TA merges to the direction orthogonal to its proximate phonon mode, mainly due to the interplay between these two non-orthogonal phonon modes. We also find that even with the existence of only one single RB, the TA can rotate in-plane. Our findings are prevalent in isostructural rare-earth oxyorthosilicates, such as Lu2SiO5. The universally underlying physics of ERP and its corresponding special class of rare-earth oxyorthosilicates may offer playgrounds for continuously tuning phonon polariton propagation direction, and broadband controlling light dispersion of polaritonic nanodevices.

6.
Nat Nanotechnol ; 18(1): 64-70, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36509927

RESUMO

Various optical crystals possess permittivity components of opposite signs along different principal directions in the mid-infrared regime, exhibiting exotic anisotropic phonon resonances. Such materials with hyperbolic polaritons-hybrid light-matter quasiparticles with open isofrequency contours-feature large-momenta optical modes and wave confinement that make them promising for nanophotonic on-chip technologies. So far, hyperbolic polaritons have been observed and characterized in crystals with high symmetry including hexagonal (boron nitride), trigonal (calcite) and orthorhombic (α-MoO3 or α-V2O5) crystals, where they obey certain propagation patterns. However, lower-symmetry materials such as monoclinic crystals were recently demonstrated to offer richer opportunities for polaritonic phenomena. Here, using scanning near-field optical microscopy, we report the direct real-space nanoscale imaging of symmetry-broken hyperbolic phonon polaritons in monoclinic CdWO4 crystals, and showcase inherently asymmetric polariton excitation and propagation associated with the nanoscale shear phenomena. We also introduce a quantitative theoretical model to describe these polaritons that leads to schemes to enhance crystal asymmetry via the damping loss of phonon modes. Ultimately, our findings show that polaritonic nanophotonics is attainable using natural materials with low symmetry, favouring a versatile and general way to manipulate light at the nanoscale.

7.
ACS Nano ; 16(8): 13241-13250, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35938977

RESUMO

Recent advancement in twisted layered metasurfaces can be employed to control the nanoscale flow of light, including the exotic hyperbolic-to-elliptic topological transitions in twisted bilayers (tBL). Such topological transitions can only occur to limited frequency ranges, restricted by the intrinsic in-plane dispersion of individual hyperbolic surfaces. Here, we report that, by controlling interlayer evanescent coupling in twisted polaritonic trilayers, moldable topological transitions of light can be achieved in broadband. We reveal that the required minimum open angle of the individual hyperbolic polaritonic surface for open-to-close topological transitions can be significantly lowered compared to that of the twisted bilayer counterpart. This increases the degree of freedom to enhance and control near-field light-matter interactions and energy management. As an example, we demonstrate a knob to manipulate near-field radiative heat transfer (NFRHT). By rotating the relative angles of trilayers, exotic and tunable thermal conductance can be achieved. Our findings enrich the controllability of light at the nanoscale in broadband, bringing twisted optical materials one step closer to practical applications.

8.
Light Sci Appl ; 9: 60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32337024

RESUMO

High-temperature infrared (IR) camouflage is crucial to the effective concealment of high-temperature objects but remains a challenging issue, as the thermal radiation of an object is proportional to the fourth power of temperature (T4). Here, we experimentally demonstrate high-temperature IR camouflage with efficient thermal management. By combining a silica aerogel for thermal insulation and a Ge/ZnS multilayer wavelength-selective emitter for simultaneous radiative cooling (high emittance in the 5-8 µm non-atmospheric window) and IR camouflage (low emittance in the 8-14 µm atmospheric window), the surface temperature of an object is reduced from 873 to 410 K. The IR camouflage is demonstrated by indoor/outdoor (with/without earthshine) radiation temperatures of 310/248 K for an object at 873/623 K and a 78% reduction in with-earthshine lock-on range. This scheme may introduce opportunities for high-temperature thermal management and infrared signal processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA