Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104829, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201586

RESUMO

Hypoxia-inducible factor-1 (HIF-1) is a critical transcription factor that regulates the expression of genes involved in cellular adaptation to low oxygen levels. Aberrant regulation of the HIF-1 signaling pathway is linked to various human diseases. Previous studies have established that HIF-1α is rapidly degraded in a von Hippel-Lindau protein (pVHL)-dependent manner under normoxic conditions. In this study, we find that pVHL binding protein 1 (VBP1) is a negative regulator of HIF-1α but not HIF-2α using zebrafish as an in vivo model and in vitro cell culture models. Deletion of vbp1 in zebrafish caused Hif-1α accumulation and upregulation of Hif target genes. Moreover, vbp1 was involved in the induction of hematopoietic stem cells (HSCs) under hypoxic conditions. However, VBP1 interacted with and promoted the degradation of HIF-1α in a pVHL-independent manner. Mechanistically, we identify the ubiquitin ligase CHIP and HSP70 as new VBP1 binding partners and demonstrate that VBP1 negatively regulated CHIP and facilitated CHIP-mediated degradation of HIF-1α. In patients with clear cell renal cell carcinoma (ccRCC), lower VBP1 expression was associated with worse survival outcomes. In conclusion, our results link VBP1 with CHIP stability and provide insights into underlying molecular mechanisms of HIF-1α-driven pathological processes.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Peixe-Zebra/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Fatores de Transcrição/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas do Citoesqueleto , Chaperonas Moleculares
2.
Small ; 20(13): e2307294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963858

RESUMO

The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2.

3.
Small ; 20(28): e2311055, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38295001

RESUMO

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1, and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.

4.
Small ; : e2400141, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431944

RESUMO

Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2 ). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2 P@NiMoO4 /NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2 P@NiMoO4 /NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2 , respectively, surpassing that of Ni2 P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2 P/NF (120 h) and Ni(OH)2 /NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2- /PO4 3- from Ni2 P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO- .

5.
Angew Chem Int Ed Engl ; 63(1): e202316522, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37994225

RESUMO

Seawater electrolysis is an attractive way of making H2 in coastal areas, and NiFe-based materials are among the top options for alkaline seawater oxidation (ASO). However, ample Cl- in seawater can severely corrode catalytic sites and lead to limited lifespans. Herein, we report that in situ carbon oxyanion self-transformation (COST) from oxalate to carbonate on a monolithic NiFe oxalate micropillar electrode allows safeguard of high-valence metal reaction sites in ASO. In situ/ex situ studies show that spontaneous, timely, and appropriate COST safeguards active sites against Cl- attack during ASO even at an ampere-level current density (j). Our NiFe catalyst shows efficient and stable ASO performance, which requires an overpotential as low as 349 mV to attain a j of 1 A cm-2 . Moreover, the NiFe catalyst with protective surface CO3 2- exhibits a slight activity degradation after 600 h of electrolysis under 1 A cm-2 in alkaline seawater. This work reports effective catalyst surface design concepts at the level of oxyanion self-transformation, acting as a momentous step toward defending active sites in seawater-to-H2 conversion systems.

6.
Small ; 19(17): e2208036, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36717274

RESUMO

Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is a potential sustainable route for large-scale ambient ammonia (NH3 ) synthesis and regulating the nitrogen cycle. However, as this reaction involves multi-electron transfer steps, it urgently needs efficient electrocatalysts on promoting NH3  selectivity. Herein, a rational design of Co nanoparticles anchored on TiO2  nanobelt array on titanium plate (Co@TiO2 /TP) is presented as a high-efficiency electrocatalyst for NO3 - RR. Density theory calculations demonstrate that the constructed Schottky heterostructures coupling metallic Co with semiconductor TiO2  develop a built-in electric field, which can accelerate the rate determining step and facilitate NO3 - adsorption, ensuring the selective conversion to NH3 . Expectantly, the Co@TiO2 /TP electrocatalyst attains an excellent Faradaic efficiency of 96.7% and a high NH3  yield of 800.0 µmol h-1  cm-2  under neutral solution. More importantly, Co@TiO2 /TP heterostructure catalyst also presents a remarkable stability in 50-h electrolysis test.

7.
Small ; 19(42): e2303424, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330654

RESUMO

Ammonia (NH3 ) is an indispensable feedstock for fertilizer production and one of the most ideal green hydrogen rich fuel. Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is being explored as a promising strategy for green to synthesize industrial-scale NH3 , which has nonetheless involved complex multi-reaction process. This work presents a Pd-doped Co3 O4 nanoarray on titanium mesh (Pd-Co3 O4 /TM) electrode for highly efficient and selective electrocatalytic NO3 - RR to NH3 at low onset potential. The well-designed Pd-Co3 O4 /TM delivers a large NH3 yield of 745.6 µmol h-1 cm-2 and an extremely high Faradaic efficiency (FE) of 98.7% at -0.3 V with strong stability. These calculations further indicate that the doping Co3 O4 with Pd improves the adsorption characteristic of Pd-Co3 O4 and optimizes the free energies for intermediates, thereby facilitating the kinetics of the reaction. Furthermore, assembling this catalyst in a Zn-NO3 - battery realizes a power density of 3.9 mW cm-2 and an excellent FE of 98.8% for NH3 .

8.
Small ; 19(24): e2300291, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919558

RESUMO

Synthesis of green ammonia (NH3 ) via electrolysis of nitric oxide (NO) is extraordinarily sustainable, but multielectron/proton-involved hydrogenation steps as well as low concentrations of NO can lead to poor activities and selectivities of electrocatalysts. Herein, it is reported that oxygen-defective TiO2 nanoarray supported on Ti plate (TiO2- x /TP) behaves as an efficient catalyst for NO reduction to NH3 . In 0.2 m phosphate-buffered electrolyte, such TiO2- x /TP shows competitive electrocatalytic NH3 synthesis activity with a maximum NH3 yield of 1233.2 µg h-1  cm-2 and Faradaic efficiency of 92.5%. Density functional theory calculations further thermodynamically faster NO deoxygenation and protonation processes on TiO2- x (101) compared to perfect TiO2 (101). And the low energy barrier of 0.7 eV on TiO2- x (101) for the potential-determining step further highlights the greatly improved intrinsic activity. In addition, a Zn-NO battery is fabricated with TiO2- x /TP and Zn plate to obtain an NH3 yield of 241.7 µg h-1  cm-2 while providing a peak power density of 0.84 mW cm-2 .

9.
Small ; 19(30): e2300620, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058080

RESUMO

Electroreduction of nitrite (NO2 - ) to valuable ammonia (NH3 ) offers a sustainable and green approach for NH3 synthesis. Here, a Cu3 P@TiO2 heterostructure is rationally constructed as an active catalyst for selective NO2 - -to-NH3 electroreduction, with rich nanosized Cu3 P anchored on a TiO2 nanoribbon array on Ti plate (Cu3 P@TiO2 /TP). When performed in the 0.1 m NaOH with 0.1 m NaNO2 , the Cu3 P@TiO2 /TP electrode obtains a large NH3 yield of 1583.4 µmol h-1  cm-2 and a high Faradaic efficiency of 97.1%. More importantly, Cu3 P@TiO2 /TP also delivers remarkable long-term stability for 50 h electrolysis. Theoretical calculations indicate that intermediate adsorption/conversion processes on Cu3 P@TiO2 interfaces are synergistically optimized, substantially facilitating the conversion of NO2 - -to-NH3 .

10.
Inorg Chem ; 62(30): 11746-11750, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37449955

RESUMO

Constructing efficient and low-cost oxygen evolution reaction (OER) catalysts operating in seawater is essential for green hydrogen production but remains a great challenge. In this study, we report an iron doped cobalt carbonate hydroxide nanowire array on nickel foam (Fe-CoCH/NF) as a high-efficiency OER electrocatalyst. In alkaline seawater, such Fe-CoCH/NF demands an overpotential of 387 mV to drive 500 mA cm-2, superior to that of CoCH/NF (597 mV). Moreover, it achieves excellent electrochemical and structural stability in alkaline seawater.

11.
Inorg Chem ; 62(32): 12644-12649, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37534956

RESUMO

Electrochemical nitrite (NO2-) reduction is recognized as a promising strategy for synthesizing valuable ammonia (NH3) and degrading NO2- pollutants in wastewater. The six-electron process for the NO2- reduction reaction is complex and necessitates a highly selective and stable electrocatalyst for efficient conversion of NO2- to NH3. Herein, a FeP nanoparticle-decorated TiO2 nanoribbon array on a titanium plate (FeP@TiO2/TP) is proposed as an efficient catalyst for NH3 production under ambient conditions. In 0.1 M NaOH with 0.1 M NO2-, such a FeP@TiO2/TP affords a large NH3 yield of 346.6 µmol h-1 cm-2 and a high Faradaic efficiency of 97.1%. Additionally, it demonstrates excellent stability and durability during long-term cycling tests and electrolysis experiments.

12.
Inorg Chem ; 62(1): 25-29, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537850

RESUMO

Electrochemical nitrate (NO3-) reduction is a potential approach to produce high-value ammonia (NH3) while removing NO3- pollution, but it requires electrocatalysts with high efficiency and selectivity. Herein, we report the development of Fe3O4 nanoparticles decorated TiO2 nanoribbon array on titanium plate (Fe3O4@TiO2/TP) as an efficient electrocatalyst for NO3--to-NH3 conversion. When operated in 0.1 M phosphate-buffered saline and 0.1 M NO3-, such Fe3O4@TiO2/TP achieves a prominent NH3 yield of 12394.3 µg h-1 cm-2 and a high Faradaic efficiency of 88.4%. In addition, it exhibits excellent stability during long-time electrolysis.


Assuntos
Nanopartículas , Nanotubos de Carbono , Nitratos , Amônia
13.
Inorg Chem ; 62(20): 7976-7981, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37144756

RESUMO

Seawater electrolysis driven by renewable electricity is deemed a promising and sustainable strategy for green hydrogen production, but it is still formidably challenging. Here, we report an iron-doped NiS nanosheet array on Ni foam (Fe-NiS/NF) as a high-performance and stable seawater splitting electrocatalyst. Such Fe-NiS/NF catalyst needs overpotentials of only 420 and 270 mV at 1000 mA cm-2 for the oxygen evolution reaction and hydrogen evolution reaction in alkaline seawater, respectively. Furthermore, its two-electrode electrolyzer needs a cell voltage of 1.88 V for 1000 mA cm-2 with 50 h of long-term electrochemical durability in alkaline seawater. Additionally, in situ electrochemical Raman and infrared spectroscopy were employed to detect the reconstitution process of NiOOH and the generation of oxygen intermediates under reaction conditions.

14.
Inorg Chem ; 62(38): 15352-15357, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37695036

RESUMO

Electrocatalytic nitrite (NO2-) reduction offers the potential to synthesize high-value ammonia (NH3) while simultaneously removing NO2- pollution from aqueous solutions, but it requires high-efficiency catalysts to drive the complex six-electron reaction. Herein, cobalt-nanoparticle-decorated 3D porous nitrogen-doped carbon network (Co@NC) is proven as a high-efficiency catalyst for the selective electroreduction of NO2- to NH3. Such Co@NC attains a large NH3 yield of 922.7 µmol h-1 cm-2 and a high Faradaic efficiency of 95.4% under alkaline conditions. Furthermore, it shows remarkable electrochemical stability during cyclic electrolysis.

15.
Circ J ; 87(4): 527-535, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36843115

RESUMO

BACKGROUND: Connective tissue growth factor (CTGF) has diagnostic value for pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD) in children; however, its value in adult patients remains unclear. This study evaluated CTGF as a biomarker in adult PAH-CHD patients.Methods and Results: Based on mean pulmonary artery pressure (mPAP), 56 CHD patients were divided into 3 groups: without PAH (W; mPAP <25 mmHg; n=28); mild PAH (M; mPAP 25-35 mmHg; n=18); and moderate and severe PAH (H; mPAP ≥35 mmHg; n=10). The control group consisted of 28 healthy adults. Plasma CTGF and B-type natriuretic peptide (BNP) concentrations were determined. Plasma CTGF concentrations were higher in the H and M groups than in the W and control groups, and were higher in the H than M group. Plasma CTGF concentrations were positively correlated with pulmonary artery systolic pressure (PASP), mPAP, and pulmonary vascular resistance, and negatively correlated with mixed venous oxygen saturation. CTGF, BNP, red blood cell distribution width, and World Health Organization Class III/IV were risk factors for PAH in CHD patients, and CTGF was an independent risk factor for PAH-CHD. The efficacy of CTGF in the diagnosis of PAH was not inferior to that of BNP. CONCLUSIONS: CTGF is a biomarker of PAH associated with CHD. It can be used for early diagnosis and severity assessment in adult patients with CHD-PAH.


Assuntos
Cardiopatias Congênitas , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Criança , Humanos , Adulto , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/etiologia , Fator de Crescimento do Tecido Conjuntivo , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar Primária Familiar/complicações , Biomarcadores , Peptídeo Natriurético Encefálico
16.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570688

RESUMO

Seawater electrolysis has great potential to generate clean hydrogen energy, but it is a formidable challenge. In this study, we report CoFe-LDH nanosheet uniformly decorated on a CuO nanowire array on Cu foam (CuO@CoFe-LDH/CF) for seawater oxidation. Such CuO@CoFe-LDH/CF exhibits high oxygen evolution reaction electrocatalytic activity, demanding only an overpotential of 336 mV to generate a current density of 100 mA cm-2 in alkaline seawater. Moreover, it can operate continuously for at least 50 h without obvious activity attenuation.

17.
Molecules ; 27(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36364442

RESUMO

The development of efficient electrochemical seawater splitting catalysts for large-scale hydrogen production is of great importance. In this work, we report an amorphous Co-Mo-B film on Ni foam (Co-Mo-B/NF) via a facile one-step electrodeposition process. Such amorphous Co-Mo-B/NF possesses superior activity with a small overpotential of 199 mV at 100 mA cm-2 for a hydrogen evolution reaction in alkaline seawater. Notably, Co-Mo-B/NF also maintains excellent stability for at least 24 h under alkaline seawater electrolysis.

18.
Proc Natl Acad Sci U S A ; 114(16): 4189-4194, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373541

RESUMO

Indigenous Tibetan people have lived on the Tibetan Plateau for millennia. There is a long-standing question about the genetic basis of high-altitude adaptation in Tibetans. We conduct a genome-wide study of 7.3 million genotyped and imputed SNPs of 3,008 Tibetans and 7,287 non-Tibetan individuals of Eastern Asian ancestry. Using this large dataset, we detect signals of high-altitude adaptation at nine genomic loci, of which seven are unique. The alleles under natural selection at two of these loci [methylenetetrahydrofolate reductase (MTHFR) and EPAS1] are strongly associated with blood-related phenotypes, such as hemoglobin, homocysteine, and folate in Tibetans. The folate-increasing allele of rs1801133 at the MTHFR locus has an increased frequency in Tibetans more than expected under a drift model, which is probably a consequence of adaptation to high UV radiation. These findings provide important insights into understanding the genomic consequences of high-altitude adaptation in Tibetans.


Assuntos
Adaptação Fisiológica , Altitude , Etnicidade/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Seleção Genética , Alelos , Feminino , Humanos , Masculino , Fenótipo , Tibet
19.
Photochem Photobiol Sci ; 18(2): 524-533, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30566162

RESUMO

We designed and synthesized cinchona alkaloid derivates PMI-BnCPD, 1 and PMI-dHQD, 2, in which a fluorescent perylene monoimide unit is linked to the quinuclidine fragment. The latter acts as an electron donor, quenching the perylene imide fluorescence in polar solvents. In the organocatalytic application of these compounds, the electron donor is deactivated by binding to an electrophile, e.g. H+. We show that this restores the fluorescence, allowing the compounds to signal the electrophile binding step that occurs in many catalytic reactions. In order to demonstrate that charge transfer is indeed the fluorescence quenching mechanism, we detected the charge separated state by means of transient absorption spectroscopy. Incidentally, the excited state absorption bands of the locally excited and charge transfer states are very similar. The activity of the fluorophore labeled organocatalyst 1 in a fluorogenic Michael addition reaction is demonstrated.

20.
Gen Comp Endocrinol ; 270: 90-95, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339805

RESUMO

Nonylphenol (NP) is an endocrine-disrupting chemical (EDC) that can lead to thyroid disruption. We explored NP-induced toxicity in the rat thyroid and evaluated the mitigating effects of mulberry crude extract (MCE) on NP toxicity. First, we aimed to evaluate NP-induced thyroid disruption by dosing Sprague-Dawley (SD) rats with NP (0, 30, 90, or 270 mg/kg body weight) daily for 28 days. Second, we aimed to determine whether MCE had a detoxifying effect on NP-induced thyroid disruption by dosing SD rats with NP (270 mg/kg body weight) or/and MCE (30, 60, or 120 mg/kg body weight) daily for 28 days. We found that NP significantly inhibited free triiodothyronin (FT3) and free thyroxine (FT4) activity in rat serum (P < 0.05), but MCE intervention significantly increased FT3 and FT4 serum levels (P < 0.05). It is possible that changes in hormonal composition might trigger the TRH-TSH-TH automatic feedback loop. The activity of the three iodothyronine deiodinases increased significantly after NP-dosing (P < 0.05), but only deiodinase3 (D3) was downregulated after MCE treatment (P < 0.05). Therefore, MCE might be an effective NP-detoxification agent against thyroid disruption because it regulates D3 activity.


Assuntos
Iodeto Peroxidase/metabolismo , Morus/química , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/sangue , Animais , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA