Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8010): 80-85, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693414

RESUMO

Building a fault-tolerant quantum computer will require vast numbers of physical qubits. For qubit technologies based on solid-state electronic devices1-3, integrating millions of qubits in a single processor will require device fabrication to reach a scale comparable to that of the modern complementary metal-oxide-semiconductor (CMOS) industry. Equally important, the scale of cryogenic device testing must keep pace to enable efficient device screening and to improve statistical metrics such as qubit yield and voltage variation. Spin qubits1,4,5 based on electrons in Si have shown impressive control fidelities6-9 but have historically been challenged by yield and process variation10-12. Here we present a testing process using a cryogenic 300-mm wafer prober13 to collect high-volume data on the performance of hundreds of industry-manufactured spin qubit devices at 1.6 K. This testing method provides fast feedback to enable optimization of the CMOS-compatible fabrication process, leading to high yield and low process variation. Using this system, we automate measurements of the operating point of spin qubits and investigate the transitions of single electrons across full wafers. We analyse the random variation in single-electron operating voltages and find that the optimized fabrication process leads to low levels of disorder at the 300-mm scale. Together, these results demonstrate the advances that can be achieved through the application of CMOS-industry techniques to the fabrication and measurement of spin qubit devices.

2.
Nat Commun ; 13(1): 7730, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513678

RESUMO

Electron spins in Si/SiGe quantum wells suffer from nearly degenerate conduction band valleys, which compete with the spin degree of freedom in the formation of qubits. Despite attempts to enhance the valley energy splitting deterministically, by engineering a sharp interface, valley splitting fluctuations remain a serious problem for qubit uniformity, needed to scale up to large quantum processors. Here, we elucidate and statistically predict the valley splitting by the holistic integration of 3D atomic-level properties, theory and transport. We find that the concentration fluctuations of Si and Ge atoms within the 3D landscape of Si/SiGe interfaces can explain the observed large spread of valley splitting from measurements on many quantum dot devices. Against the prevailing belief, we propose to boost these random alloy composition fluctuations by incorporating Ge atoms in the Si quantum well to statistically enhance valley splitting.

3.
Nat Nanotechnol ; 14(12): 1170, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31768012

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nat Nanotechnol ; 14(8): 742-746, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31285611

RESUMO

Silicon spin qubits are one of the leading platforms for quantum computation1,2. As with any qubit implementation, a crucial requirement is the ability to measure individual quantum states rapidly and with high fidelity. Since the signal from a single electron spin is minute, the different spin states are converted to different charge states3,4. Charge detection, so far, has mostly relied on external electrometers5-7, which hinders scaling to two-dimensional spin qubit arrays2,8,9. Alternatively, gate-based dispersive read-out based on off-chip lumped element resonators has been demonstrated10-13, but integration times of 0.2-2 ms were required to achieve single-shot read-out14-16. Here, we connect an on-chip superconducting resonant circuit to two of the gates that confine electrons in a double quantum dot. Measurement of the power transmitted through a feedline coupled to the resonator probes the charge susceptibility, distinguishing whether or not an electron can oscillate between the dots in response to the probe power. With this approach, we achieve a signal-to-noise ratio of about six within an integration time of only 1 µs. Using Pauli's exclusion principle for spin-to-charge conversion, we demonstrate single-shot read-out of a two-electron spin state with an average fidelity of >98% in 6 µs. This result may form the basis of frequency-multiplexed read-out in dense spin qubit systems without external electrometers, therefore simplifying the system architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA