Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Anal Chem ; 96(16): 6228-6235, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38572697

RESUMO

Fluorescence array technologies have attracted great interest in the sensing field because of their high sensitivity, low cost, and capability of multitarget detection. However, traditional array sensing relies on multiple independent sensors and thus often requires time-consuming and laborious measurement processes. Herein, we introduce a novel fluorescence array strategy of the array-on-a-metal-organic framework (MOF), which integrates multiple array elements into a single MOF matrix to achieve facile sensing and discrimination of multiple target analytes. As a proof-of-concept system, we constructed a luminescent MOF containing three different emitting channels, including a lanthanide ion (europium/Eu3+, red emission), a fluorescent dye (7-hydroxycoumarin-4-acetic acid/HCAA, blue emission), and the MOF itself (UiO-66-type MOF, blue-violet emission). Five structurally similar nitroaromatic compounds (NACs) were chosen as the targets. All three channels of the array-on-a-MOF displayed rapid and stable fluorescence quenching responses to NACs (response equilibrium achieved within 30 s). Different responses were generated for each channel against each NAC due to the various quenching mechanisms, including photoinduced electron transfer, energy competition, and the inner filter effect. Using linear discriminant analysis, the array-on-a-MOF successfully distinguished the five NACs and their mixtures at varying concentrations and demonstrated good sensitivity to quantify individual NACs (detect limit below the advisory concentration in drinking water). Moreover, the array also showed feasibility in the sensing and discrimination of multiple NACs in real water samples. The proposed "array-on-a-MOF" strategy simplifies multitarget discrimination procedures and holds great promise for various sensing applications.

2.
Environ Sci Technol ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319840

RESUMO

The design of efficient catalysts for catalytic ethylene (C2H4) oxidation is of crucial importance for extending the shelf life of fruits and vegetables. Herein, a carbon modified SBA-15 supported Pt catalyst (Pt/CSBA-15) was prepared in situ by a facile solid phase grinding-infiltration-inert atmosphere calcination method. Characterization results reveal that in the Pt/CSBA-15 catalysts thin carbon layers are successfully formed in the hexagonal pores of SBA-15. Additionally, Pt particles are well dispersed in the channels of SBA-15, and Pt/CSBA-15 has a smaller Pt particle size than the catalyst without carbon modification (i.e., Pt/SBA-15). O2 is more feasibly adsorbed and activated on small-sized Pt particles, and in situ formed carbon species enhance the hydrophobicity of catalysts. As a result, both 3Pt/CSBA-15 and 5Pt/CSBA-15 are able to maintain 100% conversion of 50 ppm of C2H4 for more than 7 h at 0 °C. 3Pt/CSBA-15 even achieves 81.5% C2H4 conversion and 71.6% CO2 yield after 20 h, exhibiting much more prominent catalytic performances than 3Pt/SBA-15. DFT calculations and in situ FTIR measurements confirm that small-sized Pt particles possess strong O2 affinity to promote O2 adsorption, and in situ formed hydrophobic carbon layers efficiently suppress competitive H2O adsorption. Such a unique one-step catalyst preparation method for regulating the size of metal particles and the hydrophobicity of catalysts can be perfectly utilized to develop simple and efficient hydrophobic catalysts applied in low-temperature oxidation of C2H4.

3.
Environ Res ; 244: 117966, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109960

RESUMO

The development of an effective sensing platform is critical for the electrochemical detection of heavy metal ions (HMIs) in water. In this study, we fabricated a newly designed sensor through the in situ assembly of reduced graphene oxide (rGO) and polyphosphate nanoparticles (polyP NPs) on a carbon cloth electrode via microorganism-mediated green biochemical processes. The characterization results revealed that the rGO produced via microbial reduction had a three-dimensional porous structure, serving as an exceptional scaffold for hosting polyP NPs, and the polyP NPs were evenly distributed on the rGO network. In terms of detecting HMIs, the numerous functional groups of polyP NPs play a major role in the coordination with the cations. This electrochemical sensor, based on polyP NPs/rGO, enabled the individual and simultaneous determination of lead ion (Pb2+) and copper ion (Cu2+) with detection limits of 1.6 nM and 0.9 nM, respectively. Additionally, the electrode exhibited outstanding selectivity for the target analytes in the presence of multiple interfering metal ions. The fabricated sensor was successfully used to determine Pb2+/Cu2+ in water samples with satisfactory recovery rates ranging from 92.16% to 104.89%. This study establishes a facile, cost-effective, and environmentally friendly microbial approach for the synthesis of electrode materials and the detection of environmental pollutants.


Assuntos
Cobre , Grafite , Nanopartículas Metálicas , Chumbo , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Água , Íons
4.
J Environ Sci (China) ; 126: 668-682, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503792

RESUMO

In the present study, two nanosized MnO2 with ß and δ phase structures and potassium loaded MnO2 catalysts with varied K loading amounts (denoted as K/MnO2) were prepared. Temperature programmed oxidation and isothermal reactions in loose contact modes were employed to examine the soot oxidation activity of the as-prepared catalysts. Characterization results show that as compared with ß-MnO2, δ-MnO2 has larger surface area and higher content of hydroxyl groups. Upon K loading, abundant hydroxyl groups in δ-MnO2 effectively sequestrate K cation to form bound K species and free K species are available only at K loading above 3.0 wt.%. In contrast, the majority of K species present as free state in ß-MnO2 even at a K loading of 1.0 wt.% due to its very low hydroxyl group content. The O2 temperature-programmed desorption (O2-TPD) demonstrates that the catalysts with free K species exhibit strong ability in activating gaseous O2, whereas the catalysts only having bound K display minor O2 activation capability. As a result, despite of slightly lower activity of ß-MnO2 than δ-MnO2, the K/ß-MnO2 catalysts exhibit substantially higher activities than K/δ-MnO2 catalysts with identical K loadings. The finding in this study clearly demonstrates that for MnO2 based catalysts, the enhancement of catalytic activity for soot oxidation is highly K loading amount dependent and the dependency is strongly associated with the phase structure of MnO2.


Assuntos
Compostos de Manganês , Fuligem , Óxidos , Gases , Potássio
5.
Water Sci Technol ; 82(12): 3023-3031, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33341790

RESUMO

Dyes are widely used in production and life. In this study, porous covalent triazine frameworks (CTFs) were synthesized and the adsorption behavior for three dyes was investigated by batch adsorption experiments. CTFs were characterized by various spectroscopic techniques for structure, porosity and surface properties. Several possible adsorption mechanisms were proposed including pore-filling, electrostatic attraction and hydrogen bonding interaction with the triazine structure of CTFs. The mechanisms were further verified by the pore size distribution and pH dependence. Additionally, CTFDCBP displayed stronger adsorption affinity and faster adsorption kinetics for dyes, because of the wide pore size distribution. This study provides a new insight into the mesoporous CTFs, which exhibit great potential as an effective adsorbent for dye removal.


Assuntos
Corantes , Triazinas , Adsorção , Porosidade , Propriedades de Superfície
6.
Environ Sci Technol ; 52(7): 4031-4039, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29553250

RESUMO

Nanoscale titanium dioxide ( nTiO2) is one of the most widely used metal oxide nanomaterials. Once released into the environment, nTiO2 may catalyze abiotic transformation of contaminants and consequently affect their fate and effects. Here, we show that the overall catalytic efficiency of nTiO2 for the dehydrochlorination reaction of 1,1,2,2-tetrachloroethane, a commonly used solvent, depends on the crystalline phase and exposed facets of nTiO2, which significantly affect the adsorption capacity and surface catalytic activity of nTiO2. Specifically, under all three pH conditions tested (7.0, 7.5 and 8.0), the overall catalytic efficiency of eight nTiO2 materials (as indicated by the surface-area-normalized reaction kinetic constants) followed the order of rutile > anatase > TiO2(B). For anatase and TiO2(B) materials, the overall catalytic efficiency increased with the increasing percentage of exposed {001} and {010} facets, respectively. Crystalline phase and exposed facets significantly affected adsorption affinities of nTiO2, likely by modulating surface hydrophobicity of nTiO2. Crystalline phase and exposed facets also determined the activity of surface catalytic sites on nTiO2 by dictating the concentration and strength of surface unsaturated Ti atoms, as the deprotonated hydroxyl groups chemisorbed to these reactive Ti atoms served as bases to catalyze the base-promoted reaction.


Assuntos
Nanoestruturas , Titânio , Adsorção , Catálise , Etano/análogos & derivados , Hidrocarbonetos Clorados , Óxidos
7.
Environ Sci Technol ; 52(7): 4040-4050, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505247

RESUMO

Sunlight-induced photoformation of silver nanoparticles (nAg), mediated by natural organic matter (NOM), is significantly affected by the concentration of Ag(I) and chloride. The initial photoformation rates of nAg in Suwannee River humic acid (SRHA) and Suwannee River natural organic matter (SRNOM) solutions were examined under simulated sunlight irradiation. A critical induction concentration (CIC) of Ag(I) (10 mg/L for SRHA and 5 mg/L for SRNOM, respectively) was observed, below which the nAg formation was minimal. The threshold is attributed to the interplay of reduction and oxidation reactions mediated by NOM, reflecting the need to achieve sufficiently fast growth of silver clusters to outcompete oxidative dissolution. The CIC can be reduced by scavenging oxidative radicals or be increased by promoting singlet oxygen and hydrogen peroxide generation. The presence of chloride effectively reduced the CIC by forming AgCl, which facilitates reduction reactions and provides deposition surfaces. SRNOM is more efficient in mediating photoformation of nAg than SRHA, owing to their differed phototransient generation. These results highlight prerequisites for the photoformation of nAg mediated by NOM, in which the photochemistry and solution chemistry are both important.


Assuntos
Nanopartículas Metálicas , Prata , Substâncias Húmicas , Íons , Luz Solar
8.
Environ Sci Technol ; 52(18): 10453-10461, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30092628

RESUMO

Vegetation fire generates vast amounts of mineral ash annually that can be readily mobilized by water or wind erosion. Little is known about the photoactivity of dissolved mineral ash in aquatic systems and its ability to mediate redox reactions of environmental pollutants. This study reports that dissolved mineral ash derived from pyrolysis of biomass is photoactive under simulated sunlight, generating reactive oxygen species. It can mediate the photoreduction of hexavalent chromium (Cr(VI)) in the presence of electron donors; for example, phenols and dissolved organic matter, at pH 4.7. The reaction kinetics followed the Langmuir-Hinshelwood model, suggesting a heterogeneous photocatalytic reaction. The enhancement of reduction efficiency was linearly correlated with the one-electron reduction potential of phenols. The synergy between dissolved mineral ash and phenols is attributed to the inhibition of electron-hole recombination. The reduction rate decreases with increasing solution pH, owing to the decreased reduction potential and surface adsorption of Cr(VI). The silicon and silicon carbide components are most likely responsible for the photocatalytic activity of dissolved mineral ash. Our results suggest that dissolved mineral ash is a natural photocatalyst that can mediate redox reactions of pollutants in sunlit aquatic systems, playing an overlooked role in natural attenuation and aquatic photochemistry.


Assuntos
Luz Solar , Poluentes Químicos da Água , Adsorção , Cromo , Minerais , Oxirredução , Fotoquímica
9.
Environ Sci Technol ; 51(12): 6877-6886, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28510419

RESUMO

Cadmium pigments are widely used in the polymer and ceramic industry. Their potential environmental risk is under debate, being the major barrier for appropriate regulation. We show that 83.0 ± 0.2% of hazardous cadmium ion (Cd2+) was released from the commercial cadmium sulfoselenide pigment (i.e., cadmium red) in aqueous suspension within 24 h under simulated sunlit conditions. This photodissolution process also generated sub-20 nm pigment nanoparticles. Cd2+ release is attributed to the reactions between photogenerated holes and the pigment lattices. The photodissolution process can be activated by both ultraviolet and visible light in the solar spectrum. Irradiation under alkaline conditions or in the presence of phosphate and carbonate species resulted in reduced charge carrier energy or the formation of insoluble and photostable cadmium precipitates on pigment surfaces, mitigating photodissolution. Tannic acid inhibited the photodissolution process by light screening and scavenging photogenerated holes. The fast release of Cd2+ from the pigment was further confirmed in river water under natural sunlight, with 38.6 ± 0.1% of the cadmium released within 4 h. Overall, this study underscores the importance to account for photochemical effects to inform risk assessments and regulations of cadmium pigments which are currently based on their low solubility.


Assuntos
Cádmio , Resíduos Industriais , Nanopartículas , Cerâmica , Luz , Solubilidade , Luz Solar
10.
Environ Sci Technol ; 50(2): 899-905, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26669961

RESUMO

A large effort is being made to develop nanosorbents with tunable surface chemistry for enhanced adsorption affinity and selectivity toward target organic contaminants. Heteroatom N-doped multiwall carbon nanotubes (N-MCNT) were synthesized by chemical vapor deposition of pyridine and were further investigated for the adsorptive removal of several aromatic chemicals varying in electronic donor and acceptor ability from aqueous solutions using a batch technique. Compared with commercial nondoped multiwall carbon nanotubes (MCNT), N-MCNT had similar specific surface area, morphology, and pore-size distribution but more hydrophilic surfaces and more surface defects due to the doping of graphitic and pyridinic N atoms. N-MCNT exhibited enhanced adsorption (2-10 folds) for the π-donor chemicals (2-naphthol and 1-naphthalmine) at pH ∼6 but similar adsorption for the weak π-donor chemical (naphthalene) and even lower adsorption (up to a 2-fold change) for the π-acceptor chemical (1,3-dinitrobenzene). The enhanced adsorption of 2-naphthol and 1-naphthalmine to N-MCNT was mainly attributed to the favored π-π electron-donor-acceptor (EDA) interaction between the π-donor adsorbate molecule and the polarized N-heterocyclic aromatic ring (π-acceptor) on N-MCNT. The proposed adsorption enhancement mechanisms were further tested through the pH effects on adsorption and the density function theory (DFT) calculation. The results show for the first time that the adsorptive interaction of π-donor aromatic compounds with carbon nanomaterials can be facilitated by N-doping.


Assuntos
Hidrocarbonetos Aromáticos/química , Nanotubos de Carbono/química , Nitrogênio/química , Adsorção , Radical Hidroxila , Poluentes Químicos da Água/química
11.
Environ Sci Technol ; 48(7): 3856-63, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24617768

RESUMO

The environmental implications of carbon nanomaterials have received much attention. Nonetheless, little is known about how carbon nanomaterials might affect the abiotic transformation of organic contaminants in aquatic environments. In this study, we observed that three functionalized multiwalled carbon nanotubes (MWCNTs)-including a hydroxylated MWCNT (OH-MWCNT), a carboxylated MWCNT (COOH-MWCNT), and an aminated MWCNT (NH2-MWCNT)-all had strong catalytic effects on the dehydrochlorination of 1,1,2,2-tetrachloroethane (TeCA) at three different pH (7, 8, and 9); notably, the most significant effects (up to 130% increase in reaction rate) were observed at pH 7, at which reaction kinetics was very slow in the absence of MWCNT. The primary mechanism was that the -NH2 group and the deprotonated -COOH and -OH groups serve as bases to catalyze the reaction. Modeling results indicate that at any given pH the transformation kinetic constants of MWCNT-adsorbed TeCA were up to 2 orders of magnitude greater than the respective kinetic constant of dissolved TeCA. The overall catalytic effects of the MWCNTs depended both on the basicity of the surface functionalities of MWCNT and on the adsorption affinities of MWCNT for TeCA. Interestingly, Suwannee River humic acid-selected as a model dissolved organic matter-had negligible effects on the dehydrochlorination kinetics, even though it is rich in surface O-functionalities. An important environmental implication is that carbon nanotubes released into the environment might significantly affect the fate of chlorinated solvents.


Assuntos
Etano/análogos & derivados , Halogenação , Hidrocarbonetos Clorados/química , Nanotubos de Carbono/química , Adsorção , Catálise , Etano/química , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Cinética , Rios/química , Solubilidade , Soluções , Propriedades de Superfície , Temperatura
12.
Sci Total Environ ; 944: 173905, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38871330

RESUMO

Iodo-phenolic disinfection byproducts (DBPs) widely occur in disinfected water, posing potential risks to human health and the ecosystem as they possess higher toxicity than the bromo- and chloro-analogs. Herein, we elucidated the catalytic hydrodehalogenation (HDH) activity and selectivity of polyiodinated phenolic DBPs on supported noble metal catalysts at ambient conditions. Both 2,4,6-triiodophenol and 4-chloro-2,6-diiodophenol can be efficiently eliminated on Pd/TiO2 and Rh/TiO2 within 20 min, with Pd/TiO2 exhibiting higher turnover frequency. The HDH reactions proceeded in both stepwise and concerted pathways on Pd/TiO2, while they were dominantly stepwise on Rh/TiO2. Experimental results and theoretical calculations revealed that the HDH selectivity depends on the position and the bond energy of halo-substitutions. For the HDH of 2,4,6-triiodophenol, the para-substituted iodine was more favorable to be dehalogenated than the ortho-substituted ones due to the steric hindrance of the hydroxyl group. For the HDH of 4-chloro-2,6-diiodophenol, the ortho-substituted iodine was removed before the para-substituted chlorine as CI bond had higher reactivity than CCl bond. Significant catalyst deactivation was observed for the HDH of 4-chloro-2,6-diiodophenol on Pd/TiO2 due to iodine poisoning, resulting in 4-chlorophenol as the dominant product. In contrast, Rh/TiO2 can completely hydrodehalogenate 4-chloro-2,6-diiodophenol into cyclohexanone with little iodine poisoning. Our results suggest that HDH is an efficient process for abating iodo-phenolic DBPs. Rh/TiO2 is a more promising HDH catalyst for iodinated DBP removal than Pd/TiO2 with excellent resistance to iodine poisoning.

13.
ACS Appl Mater Interfaces ; 16(17): 21838-21848, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634144

RESUMO

Iron-based materials are effective for the reductive removal of the disinfection byproduct bromate in water, while the construction of highly stable and active Fe-based materials with wide pH adaptability remains greatly challenging. In this study, highly dispersed iron phosphide-decorated porous carbon (Fe2P(x)@P(z)NC-y) was prepared via the thermal hydrolysis of Fe@ZIF-8, followed by phosphorus doping (P-doping) and pyrolysis. The reduction performances of Fe2P(x)@P(z)NC-y for bromate reduction were evaluated. Characterization results showed that the Fe, P, and N elements were homogeneously distributed in the carbonaceous matrix. P-doping regulated the coordination environment of Fe atoms and enhanced the conductivity, porosity, and wettability of the carbonaceous matrix. As a result, Fe2P(x)@P(1.0)NC-950 exhibited enhanced reactivity and stability with an intrinsic reduction kinetic constant (kint) 1.53-1.85 times higher than Fe(x)@NC-950 without P-doping. Furthermore, Fe2P(0.125)@P(1.0)NC-950 displayed superior reduction efficiency and prominent stability with very low Fe leaching (4.53-22.98 µg L-1) in a wide pH range of 4.0-10.0. The used Fe2P(0.125)@P(1.0)NC-950 could be regenerated by phosphating, and the regenerated Fe2P(0.125)@P(1.0)NC-950 maintained 85% of its primary reduction activity after five reuse cycles. The study clearly demonstrates that Fe2P-decorated porous carbon can be applied as a robust and stable Fe-based material in aqueous bromate reduction.

14.
J Environ Qual ; 42(1): 191-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673754

RESUMO

Graphenes are an emerging class of carbon nanomaterials whose adsorption properties toward organic compounds have not been well understood. In the present study, graphene nanosheets were prepared by reoxidation and abrupt heating of graphite oxide, which was prepared by sequential chemical oxidation of commercial nonporous graphite powder. Adsorption properties of three aromatic compounds (naphthalene, 2-naphthol, and 1-naphthylamine) and one pharmaceutical compound (tylosin) on graphene nanosheets and graphite oxide were examined to explore the potential of these two adsorbents for the removal of organic contaminants from aqueous solutions. Compared with the literature data of adsorption on carbon nanotubes, adsorption of bulky, flexible tylosin on graphene nanosheets exhibited markedly faster adsorption kinetics, which can be attributed to their opened-up layer structure. Graphene nanosheets and graphite oxide showed similar sequences of adsorption affinity: 1-naphthylamine > 2-naphthol > tylosin > naphthalene (with much larger differences observed on graphite oxide). It was proposed that the strong adsorption of the three aromatic compounds was mainly due to π-π electron donor-acceptor interactions with the graphitic surfaces of adsorbents. Additionally, Lewis acid-base interaction was likely an important factor contributing to the strong adsorption of 1-naphthylamine and tylosin, especially for the O-functionality-abundant graphite oxide. After being normalized on the basis of adsorbent surface area, adsorption affinities of all four tested adsorbates on graphene nanosheets were very close to those on nonporous graphite powder, reflecting complete accessibility of the adsorbent surface area in adsorption.


Assuntos
Grafite , Óxidos , Adsorção , Concentração de Íons de Hidrogênio , Nanotubos de Carbono/química , Compostos Orgânicos
15.
Chemosphere ; 310: 136685, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36202378

RESUMO

Liquid phase catalytic hydrogenation reduction is a feasible method to eliminate Cr(VI) in water, while supported noble metal catalysts are liable to deactivation. In this study, carbon nanotube supported Pt catalyst (Pt/CNT) coated by polyaniline (Pt/CNT@PANI) was prepared and applied in the liquid phase catalytic hydrogenation of Cr(VI). Characterization results disclose that after coating Pt/CNT is completely wrapped by PANI layers and active Pt particles are no longer accessible. Despite complete embedment of Pt particles by PANI layers, Pt/CNT@PANI remains highly active for Cr(VI) reduction in liquid phase catalytic hydrogenation. The catalytic Cr(VI) reduction on Pt/CNT@PANI can be described by a PANI oxidation-reduction mechanism, by which PANI is first oxidized by Cr(VI) to form Cr(III), and oxidized PANI is reduced by catalytic hydrogenation. The Cr(VI) reduction on Pt/CNT@PANI complies with the Langmuir-Hinshelwood model, reflecting the pivotal role of Cr(VI) adsorption. Furthermore, the catalytic activity of Pt/CNT@PANI differs with PANI layer thickness and Cr(VI) reduction is positively correlated with reaction temperature. Catalyst recycling results show that after 4 cycles Pt/CNT loses 92.4% of catalytic activity, while the initial activity of Pt/CNT@PANI slightly decreases by 11.6%, demonstrating its high catalyst stability.

16.
ACS Appl Mater Interfaces ; 15(13): 16654-16663, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36825856

RESUMO

Triethylamine (TEA) is a flammable and highly toxic gas, and the fast, accurate, and sensitive detection of gas TEA remains greatly challenging. Herein, we report a ZnO nanorod anchored with a single-atom Pt catalyst (Pt1/ZnO) as a gas sensor for TEA detection. The sensor shows high selectivity and high response to gas TEA with a response value of 4170 at 200 °C, which is 92 times higher than that of pure ZnO. Moreover, the Pt1/ZnO sensor has very short response and recovery times of only 34 and 76 s, respectively, and also has a high response to ppb-level TEA gas (100 ppb-21.6). The gas-sensing enhancement mechanism of the Pt1/ZnO sensor to gas TEA was systematically investigated using band structure analysis, in situ diffuse reflectance infrared Fourier transformation spectroscopy, and density functional theory calculations. The results show that the oxygen vacancies on Pt1/ZnO can effectively activate the adsorbed oxygen. Moreover, chemical bonds can be formed between Pt single atoms and N atoms in TEA to achieve effective adsorption and activation of TEA molecules, facilitating the reaction between TEA and the adsorbed oxygen on Pt1/ZnO, and thereby obtaining high gas-sensing performance. This work highlights the crucial role of Pt single-atom in improving the sensing performance for gas TEA detection, paving the way for developing more advanced gas sensors.

17.
Anal Chim Acta ; 1276: 341646, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573122

RESUMO

Mercury is a common contaminant found in natural waters, which is highly toxic to human health. Thus, the facile and reliable monitoring of mercury in waters is of great significance. In this study, we fabricated a novel loofah-like hierarchical porous carbon with sulfhydryl functionality (S-LHC), and applied it as an ultrasensitive sensor for the electrochemical detection of mercury in water. The S-LHC was prepared through the direct pyrolysis of a triazole-rich metal-organic framework (MOF), followed by chemical modification using thioglycolic acid. The highly conductive N-doped carbon framework of S-LHC facilitated the electron transfer in mercury electrochemical sensing. Meanwhile, the open hierarchical pore structure and abundant sulfhydryl groups allowed the fast diffusion and effective enrichment of mercury ions. Consequently, the S-LHC sensor exhibited an exceptionally high sensitivity for mercury ions, with the mercury detection limit (0.36 nM) orders of magnitude lower than the regulated values in drinking water (typically 10∼30 nM). The constructed sensor also afforded good anti-interference ability and excellent stability for long-term detection of mercury in a variety of complex real water samples. The present study provides not only a facile method for mercury detection, but also a new idea for the construction of highly sensitive electrochemical sensors.

18.
ACS Appl Mater Interfaces ; 15(15): 18907-18917, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37018015

RESUMO

Electrochemical sensing provides a feasible avenue to monitor heavy metal ions (HMIs) in water, whereas the construction of highly sensitive and selective sensors remains challenging. Herein, we fabricated a novel amino-functionalized hierarchical porous carbon by the template-engaged method using ZIF-8 as the precursor and polystyrene sphere as the template, followed by carbonization and controllable chemical grafting of amino groups for efficient electrochemical detection of HMIs in water. The amino-functionalized hierarchical porous carbon features an ultrathin carbon framework with a high graphitization degree, excellent conductivity, unique macro-, meso-, and microporous architecture, and rich amino groups. As a result, the sensor exhibits prominent electrochemical performance with significantly low limits of detection for individual HMIs (i.e., 0.93 nM for Pb2+, 2.9 nM for Cu2+, and 1.2 nM for Hg2+) and simultaneous detection of HMIs (i.e., 0.62 nM for Pb2+, 1.8 nM for Cu2+, and 0.85 nM for Hg2+), which are superior to most reported sensors in the literature. Moreover, the sensor displays excellent anti-interference ability, repeatability, and stability for HMI detection in actual water samples.

19.
ACS Appl Mater Interfaces ; 15(39): 45949-45959, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37748196

RESUMO

CO2 hydrogenation via the reverse water gas shift (RWGS) reaction is a promising strategy for CO2 utilization while constructing Ni-based catalysts with high catalytic activity and perfect CO selectivity remains a great challenging. Here, we demonstrate that the product selectivity for CO2 hydrogenation can be significantly tuned from CH4 to CO by phosphating of SiO2-supported Ni catalysts due to the geometric effect. Interestingly, nickel phosphide catalysts with different crystalline phases (Ni12P5 and Ni2P) differ sharply in CO2 conversion, and Ni12P5 is remarkably more active. Furthermore, we developed a facile strategy to confine small Ni12P5 nanoparticles in mesoporous SiO2 channels (Ni12P5@SBA-15). Enhanced activity is exhibited on Ni12P5@SBA-15, ascribed to the highly effective confinement effect. The in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculations unveil that catalytic CO2 hydrogenation follows a direct CO2 dissociation route with adsorbed CO as the key intermediate. Notably, strong multibonded CO (threefold and bridge-bonded CO) is feasibly formed on the Ni catalyst accounting for CH4 as the dominant product whereas only weak linearly bonded CO exists on nickel phosphide catalysts resulting in almost 100% CO selectivity. The present results indicate that Ni12P5@SBA-15 combining the geometric effect and the confinement effect can achieve near-unity CO selectivity and enhanced activity for CO2 hydrogenation.

20.
Chem Commun (Camb) ; 59(22): 3277-3280, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36825545

RESUMO

A nanozyme-like colorimetric sensing strategy based on persulfate activation on Co-based metal-organic frameworks is developed for biomolecule detection in solution and on paper strips. By switching from H2O2 activation on nanozymes to catalytic persulfate activation, this general strategy provides higher sensitivity, faster speed, and wider application ranges for detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA