Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 83(24): 4570-4585.e7, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38092000

RESUMO

The nucleotide-binding domain (NBD), leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical mediator of the innate immune response. How NLRP3 responds to stimuli and initiates the assembly of the NLRP3 inflammasome is not fully understood. Here, we found that a cellular metabolite, palmitate, facilitates NLRP3 activation by enhancing its S-palmitoylation, in synergy with lipopolysaccharide stimulation. NLRP3 is post-translationally palmitoylated by zinc-finger and aspartate-histidine-histidine-cysteine 5 (ZDHHC5) at the LRR domain, which promotes NLRP3 inflammasome assembly and activation. Silencing ZDHHC5 blocks NLRP3 oligomerization, NLRP3-NEK7 interaction, and formation of large intracellular ASC aggregates, leading to abrogation of caspase-1 activation, IL-1ß/18 release, and GSDMD cleavage, both in human cells and in mice. ABHD17A depalmitoylates NLRP3, and one human-heritable disease-associated mutation in NLRP3 was found to be associated with defective ABHD17A binding and hyper-palmitoylation. Furthermore, Zdhhc5-/- mice showed defective NLRP3 inflammasome activation in vivo. Taken together, our data reveal an endogenous mechanism of inflammasome assembly and activation and suggest NLRP3 palmitoylation as a potential target for the treatment of NLRP3 inflammasome-driven diseases.


Assuntos
Aciltransferases , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Caspase 1/metabolismo , Histidina/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipoilação , Macrófagos/metabolismo , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
2.
EMBO J ; 37(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30065069

RESUMO

Generation of single-stranded DNA (ssDNA) is required for the template strand formation during DNA replication. Replication Protein A (RPA) is an ssDNA-binding protein essential for protecting ssDNA at replication forks in eukaryotic cells. While significant progress has been made in characterizing the role of the RPA-ssDNA complex, how RPA is loaded at replication forks remains poorly explored. Here, we show that the Saccharomyces cerevisiae protein regulator of Ty1 transposition 105 (Rtt105) binds RPA and helps load it at replication forks. Cells lacking Rtt105 exhibit a dramatic reduction in RPA loading at replication forks, compromised DNA synthesis under replication stress, and increased genome instability. Mechanistically, we show that Rtt105 mediates the RPA-importin interaction and also promotes RPA binding to ssDNA directly in vitro, but is not present in the final RPA-ssDNA complex. Single-molecule studies reveal that Rtt105 affects the binding mode of RPA to ssDNA These results support a model in which Rtt105 functions as an RPA chaperone that escorts RPA to the nucleus and facilitates its loading onto ssDNA at replication forks.


Assuntos
Genoma Fúngico , Instabilidade Genômica , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Chaperonas Moleculares/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Crit Rev Biotechnol ; : 1-17, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581326

RESUMO

Scutellaria Linn., which belongs to the family Lamiaceae, is a commonly used medicinal plant for heat clearing and detoxification. In particular, the roots of S. baicalensis and the entire herb of S. barbata have been widely used in traditional medicine for thousands of years. The main active components of Scutellaria, including: baicalein, wogonin, norwogonin, scutellarein, and their glycosides have potential or existing drug usage. However, the wild resources of Scutellaria plants have been overexploited, and degenerated germplasm resources cannot fulfill the requirements of chemical extraction and clinical usage. Metabolic engineering and green production via microorganisms provide alternative strategies for greater efficiency in the production of natural products. Here, we review the progress of: pharmacological investigations, multi-omics, biosynthetic pathways, and metabolic engineering of various Scutellaria species and their active compounds. In addition, based on multi-omics data, we systematically analyze the phylogenetic relationships of Scutellaria and predict candidate transcription factors related to the regulation of active flavonoids. Finally, we propose the prospects of directed evolution of core enzymes and genome-assisted breeding to alleviate the shortage of plant resources of Scutellaria. This review provides important insights into the sustainable utilization and development of Scutellaria resources.

4.
Mediators Inflamm ; 2021: 2481907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34462628

RESUMO

BACKGROUND: Heart transplantation (HT) is the only effective treatment for end-stage heart failure because it can effectively improve the survival rate and quality of life of patients with heart failure. Artesunate (ART) is an artemisinin derivative, with good water solubility and higher oral bioavailability. The main aim of this study was to determine the role of ART in HT mice. METHODS: In animal experiments, mice were divided into the control group, HT group, low ART+HT group, and high ART+HT group. Next, inflammatory cell infiltration, oxidative stress injury, and myocardial cell apoptosis were determined in heart tissue. The proportion of multiple lymphocytes in spleen and lymph nodes was then determined using flow cytometry. In addition, cell experiments were conducted to determine the changes in expression of surface maturation markers of BMDC and changes in intracellular reactive oxygen species after LPS stimulation. Finally, western blot analysis was performed to determine the levels of endoplasmic reticulum stress-related proteins (CHOP/ATF4/PERK). RESULTS: The survival time of mice in the ART treatment group was significantly prolonged and was positively correlated with the dose. In animal experiments, ART significantly reduced inflammatory cell infiltration in heart tissue and the proportion of CD4+CD8+ T cells in spleens and lymph nodes. Moreover, ART treatment lowered the 8-OHdg in hearts and myocardial apoptosis. In cell experiments, ART treatment slowed down the development and maturation of BMDCs by inhibiting the expression of endoplasmic reticulum stress-related proteins. Furthermore, the treatment alleviated the oxidative stress damage of BMDCs. CONCLUSION: ART can inhibit maturation of dendritic cells through the endoplasmic reticulum stress signaling pathway, thereby alleviating acute rejection in mice after heart transplantation.


Assuntos
Transplante de Coração , Qualidade de Vida , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/farmacologia , Animais , Apoptose , Artesunato/farmacologia , Artesunato/uso terapêutico , Células Dendríticas/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Transdução de Sinais , eIF-2 Quinase/metabolismo , eIF-2 Quinase/farmacologia
5.
Nucleic Acids Res ; 46(21): 11326-11339, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30304473

RESUMO

Repair of DNA double-strand breaks (DSBs) requires eviction of the histones around DNA breaks to allow the loading of numerous repair and checkpoint proteins. However, the mechanism and regulation of this process remain poorly understood. Here, we show that histone H2B ubiquitination (uH2B) promotes histone eviction at DSBs independent of resection or ATP-dependent chromatin remodelers. Cells lacking uH2B or its E3 ubiquitin ligase Bre1 exhibit hyper-resection due to the loss of H3K79 methylation that recruits Rad9, a known negative regulator of resection. Unexpectedly, despite excessive single-strand DNA being produced, bre1Δ cells show defective RPA and Rad51 recruitment and impaired repair by homologous recombination and response to DNA damage. The HR defect in bre1Δ cells correlates with impaired histone loss at DSBs and can be largely rescued by depletion of CAF-1, a histone chaperone depositing histones H3-H4. Overexpression of Rad51 stimulates histone eviction and partially suppresses the recombination defects of bre1Δ mutant. Thus, we propose that Bre1 mediated-uH2B promotes DSB repair through facilitating histone eviction and subsequent loading of repair proteins.


Assuntos
Dano ao DNA , Histonas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Ubiquitinação , Trifosfato de Adenosina/química , Cromatina/química , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA de Cadeia Simples/química , Recombinação Homóloga , Microscopia de Fluorescência , Mutação , Recombinação Genética , Schizosaccharomyces/metabolismo , Análise de Sequência de RNA
6.
Acta Biochim Biophys Sin (Shanghai) ; 49(8): 655-668, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541389

RESUMO

DNA double-strand breaks (DSBs) are among the most deleterious type of DNA lesions threatening genome integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are two major pathways to repair DSBs. HR requires a homologous template to direct DNA repair, and is generally recognized as a high-fidelity pathway. In contrast, NHEJ directly seals broken ends, but the repair product is often accompanied by sequence alterations. The choice of repair pathways is strictly controlled by the cell cycle. The occurrence of HR is restricted to late S to G2 phases while NHEJ operates predominantly in G1 phase, although it can act throughout most of the cell cycle. Deregulation of repair pathway choice can result in genotoxic consequences associated with cancers. How the cell cycle regulates the choice of HR and NHEJ has been extensively studied in the past decade. In this review, we will focus on the current progresses on how HR is controlled by the cell cycle in both Saccharomyces cerevisiae and mammals. Particular attention will be given to how cyclin-dependent kinases modulate DSB end resection, DNA damage checkpoint signaling, repair and processing of recombination intermediates. In addition, we will discuss recent findings on how HR is repressed in G1 and M phases by the cell cycle.


Assuntos
Ciclo Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Recombinação Homóloga , Animais , Quinases Ciclina-Dependentes/metabolismo , Fase G2 , Humanos , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Molecules ; 21(4): 482, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27077837

RESUMO

"Daodi herb" enjoys a good reputation for its quality and clinical effects. As one of the most popular daodi herbs, Astragalus membranaceus (Fisch.) Bge var. mongholicus (Bge.) Hsiao (A. membranaceus) is popularly used for its anti-oxidant, anti-inflammatory and immune-enhancing properties. In this study, we used inductively coupled plasma atomic emission spectrometry (ICP-AES) technique to investigate the inorganic elements contents in A. mongholicu and its soil samples from daodi area (Shanxi) and non-daodi areas (Inner Mongolia and Gansu). A total of 21 inorganic elements (Pb, Cd, As, Hg, Cu, P, K, Zn, Mn, Ca, Mg, Fe, Se, B, Al, Na, Cr, Ni, Ba, Ti and Sr) were simultaneously determined. Principal component analysis (PCA) was performed to differentiate A. mongholicu and soil samples from the three main producing areas. It was found that the inorganic element characteristics as well as the uptake and accumulation behavior of the three kinds of samples were significantly different. The high contents of Fe, B, Al, Na, Cr and Ni could be used as a standard in the elements fingerprint to identify daodi and non-daodi A. Mongholicus. As the main effective compounds were closely related to the pharmacodynamics activities, the inter-relationships between selected elements and components could reflect that the quality of A. Mongholicus from Shanxi were superior to others to a certain degree. This finding highlighted the usefulness of ICP-AES elemental analysis and evidenced that the inorganic element profile can be employed to evaluate the genuineness of A. mongholicus.


Assuntos
Astragalus propinquus/química , Compostos Inorgânicos/isolamento & purificação , Plantas Medicinais/química , Astragalus propinquus/classificação , Humanos , Compostos Inorgânicos/química , Análise de Componente Principal , Solo/química , Espectrofotometria Atômica , Análise Espectral
8.
BMC Complement Altern Med ; 14: 302, 2014 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-25128184

RESUMO

BACKGROUND: The long term use of Rheum palmatum for the treatment of diseases associated with chronic hepatitis and renal failure can lead to liver and kidney damage. To reduce the toxicity of R. palmatum and alleviate any symptoms of decanta and celialgia, the raw material has been subjected to a specific process prior to its use for hundreds of years. Despite its extensive use in medicine, very little is currently known about the nature of the components present in this material in terms of their efficacy and overall toxicity, and the effect that processing has on the levels of these components in the processed material. The aim of this investigation was to explore potential differences in the chemical markers between batches of raw and processed R. palmatum and to develop a deeper understanding of the underlying mechanisms responsible for the enhanced efficacy and reduced toxicity of the processed material. METHODS: Raw and processed R. palmatum samples were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) coupled with multivariate statistical analysis using principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA). RESULTS: The emodin-8-O-glucoside, emodin-O-glucoside, catechin-glucopyranoside, gallic acid-3-O-glucoside, torachrysone, and chrysophanol dimethyl ether were rapidly explored as representative markers to distinguish for the first time between the raw and processed R. palmatum material. Among the potential chemical markers, Emodin-8-O-glucoside and gallic acid-3-O-glucoside were determined to be the best markers for the raw and processed R. palmatum. CONCLUSION: UPLC/Q-TOF-MS with multivariate statistical analysis represents an efficient method for exploring the chemical markers in the raw and processed R. palmatum material, as well as investigating the mechanisms associated with the processing, quality control, and safe application of R. palmatum.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Rheum/química , Espectrometria de Massas em Tandem/métodos , Biomarcadores/química , Química Farmacêutica , Análise Discriminante , Medicamentos de Ervas Chinesas/isolamento & purificação , Análise dos Mínimos Quadrados , Análise Multivariada , Análise de Componente Principal
9.
Phytother Res ; 28(9): 1275-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25087616

RESUMO

Astragalus membranaceus is one of the most widely used traditional Chinese herbal medicines. It is used as immune stimulant, tonic, antioxidant, hepatoprotectant, diuretic, antidiabetic, anticancer, and expectorant. The current paper reviews the botanical characteristics, phytochemistry, and pharmacology of Astragali Radix. Information on Astragali Radix was gathered via the Internet (using Google Scholar, Baidu Scholar, Elsevier, ACS, Medline Plus, CNKI, and Web of Science) as well as from libraries and local books. More than 100 compounds, including flavonoids, saponins, polysaccharides, and amino acids, have so far been identified, and the various biological activities of the compounds have been reported. As an important traditional Chinese medicine, further studies on Astragali Radix can lead to the development of new drugs and therapies for various diseases. The improvement of its utilization should be studied further.


Assuntos
Astragalus propinquus/química , Medicamentos de Ervas Chinesas/farmacologia , Astrágalo/química , Medicamentos de Ervas Chinesas/química , Flavonoides/química , Polissacarídeos/química , Saponinas/química
10.
Yao Xue Xue Bao ; 49(12): 1730-8, 2014 Dec.
Artigo em Zh | MEDLINE | ID: mdl-25920205

RESUMO

To establish a new method for identifying genus of Lilium by DNA barcoding technology, ITS, ITS2, psbA-trnH, matK and rbcL sequences were analyzed in term of variation of inter- and intra-species, barcoding gap, neighbor-joining tree to distinguish genus of Lilium based on 978 sequences from experimental and GenBank database, and identification efficiency was evaluated by Nearest distance and BLAST1 methods. The results showed that DNA barcoding could identify different species in genus of Lilium. ITS sequence performed higher identification efficiency, and had significant difference between intra- and inter-species. And NJ tree could also divide species into different clades. Results indicate that DNA barcoding can identify genus of Lilium accurately. ITS sequence can be the optimal barcode to identify species of Lilium.


Assuntos
Código de Barras de DNA Taxonômico , Lilium/classificação , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética
11.
Yao Xue Xue Bao ; 49(2): 260-6, 2014 Feb.
Artigo em Zh | MEDLINE | ID: mdl-24761620

RESUMO

This study provides the candidate sequences in the identification of Radix et Rhizoma Clematidis and its adulterants using DNA barcoding. We amplified and sequenced the region psbA-trnH, with the data of 284 sequences from GenBank, the differential intra- and inter-specific divergences, genetic distance, barcoding gap were used to evaluate five barcodes, and the identification efficiency was assessed using BLAST1 and Nearest Distance methods. The results showed that psbA-trnH barcodes performed high identification efficiency and inter-specific divergences among the five different DNA barcodes. Analysis of the barcoding gap and NJ tree showed psbA-trnH was superior to other barcodes. Based on the identification and PCR amplification efficiency, psbA-trnH can be the ideal barcode to identify Radix et Rhizoma Clematidis and its adulterants accurately.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/genética , Plantas Medicinais/genética , Ranunculaceae/genética , Contaminação de Medicamentos , Técnicas de Amplificação de Ácido Nucleico/métodos , Raízes de Plantas/genética , Plantas Medicinais/classificação , Ranunculaceae/classificação , Rizoma/genética , Especificidade da Espécie
12.
Biomedicines ; 12(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38927411

RESUMO

Aortic dissection (AD) is a life-threatening acute aortic syndrome. There are limitations and challenges in the discovery and application of biomarkers and drug targets for AD. Mendelian randomization (MR) analysis is a reliable analytical method to identify effective therapeutic targets. We aimed to identify novel therapeutic targets for AD and investigate their potential side-effects based on MR analysis. Data from protein quantitative trait loci (pQTLs) were used for MR analyses to identify potential therapeutic targets. We probed druggable proteins involved in the pathogenesis of aortic dissection from deCODE. In this study, a two-sample MR analysis was conducted, with druggable proteins as the exposure factor and data on genome-wide association studies (GWAS) of AD as the outcome. After conducting a two-sample MR, summary data-based Mendelian randomization (SMR) analysis and colocalization analysis were performed. A protein-protein interaction (PPI) network was also constructed to delve into the interactions between identified proteins. After MR analysis and the Steiger test, we identified five proteins as potential therapeutic targets for AD. SMR analysis and colocalization analysis also confirmed our findings. Finally, we identified ASPN (OR = 1.36, 95% CI: 1.20, 1.54, p = 4.22 × 10-5) and SPOCK2 (OR = 0.57, 95% CI: 0.41, 0.78, p = 4.52 × 10-4) as the core therapeutic targets. Through PPI network analysis, we identified six druggable targets, enabling the subsequent identification of six promising drugs from DrugBank for treating AD. This discovery of specific proteins as novel therapeutic targets represents a significant advancement in AD treatment. These findings provide more effective treatment options for AD.

13.
FEBS Lett ; 598(9): 959-977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644468

RESUMO

Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.


Assuntos
Neoplasias , Humanos , Animais , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Aciltransferases/metabolismo , Aciltransferases/química , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/metabolismo , Acilação , Lipoilação , Processamento de Proteína Pós-Traducional , Doenças do Sistema Imunitário/enzimologia , Doenças do Sistema Imunitário/metabolismo
14.
Front Oncol ; 14: 1376496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741782

RESUMO

FOXK2, a member of the Forkhead box K (FOXK) transcription factor family, is widely expressed in various tissues and organs throughout the body. FOXK2 plays crucial roles in cell proliferation, differentiation, autophagy, de novo nucleotide biosynthesis, DNA damage response, and aerobic glycolysis. Although FOXK2 is recognized as an oncogene in colorectal cancer and hepatocellular carcinoma, it acts as a tumor suppressor in breast cancer, cervical cancer, and non-small cell lung cancer (NSCLC). This review provides an overview of the recent progress in understanding the regulatory mechanisms of FOXK2 and its downstream targets, highlights the significant impact of FOXK2 dysregulation on cancer etiology, and discusses the potential of targeting FOXK2 for cancer treatment.

15.
Front Plant Sci ; 15: 1380157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919820

RESUMO

Fagopyrum dibotrys, belonging to the family Polygonaceae and genus Fagopyrum, is used in traditional Chinese medicine and is rich in beneficial components, such as flavonoids. As its abundant medicinal value has become increasingly recognized, its excessive development poses a considerable challenge to wild germplasm resources, necessitating artificial cultivation and domestication. Considering these factors, a high-quality genome of F. dibotrys was assembled and the evolutionary relationships within Caryophyllales were compared, based on which 58 individual samples of F. dibotrys were re-sequenced. We found that the samples could be categorized into three purebred populations and regions distributed at distinct elevations. Our varieties were cultivated from the parental populations of the subpopulation in central Yunnan. F. dibotrys is speculated to have originated in the high-altitude Tibetan Plateau region, and that its combination with flavonoids can protect plants against ultraviolet radiation; this infers a subpopulation with a high accumulation of flavonoids. This study assembled a high-quality genome and provided a theoretical foundation for the future introduction, domestication, and development of cultivated varieties of F. dibotrys.

16.
Transl Res ; 260: 1-16, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37220836

RESUMO

Neointimal hyperplasia is a major clinical complication of coronary artery bypass graft and percutaneous coronary intervention. Smooth muscle cells (SMCs) play a vital roles in neointimal hyperplasia development and undergo complex phenotype switching. Previous studies have linked glucose transporter member 10(Glut10) to the phenotypic transformation of SMCs. In this research, we reported that Glut10 helps maintain the contractile phenotype of SMCs. The Glut10-TET2/3 signaling axis can arrest neointimal hyperplasia progression by improving mitochondrial function via promotion of mtDNA demethylation in SMCs. Glut10 is significantly downregulated in both human and mouse restenotic arteries. Global Glut10 deletion or SMC-specific Glut10 ablation in the carotid artery of mice accelerated neointimal hyperplasia, while Glut10 overexpression in the carotid artery triggered the opposite effects. All of these changes were accompanied by a significant increase in vascular SMCs migration and proliferation. Mechanistically, Glut10 is expressed primarily in the mitochondria after platelet-derived growth factor-BB (PDGF-BB) treatment. Glut10 ablation induced a reduction in ascorbic acid (VitC) concentrations in mitochondria and mitochondrial DNA (mtDNA) hypermethylation by decreasing the activity and expression of the Ten-eleven translocation (TET) protein family. We also observed that Glut10 deficiency aggravated mitochondrial dysfunction and decreased the adenosinetriphosphate (ATP) content and the oxygen consumption rate, which also caused SMCs to switch their phenotype from contractile to synthetic phenotype. Furthermore, mitochondria-specific TET family inhibition partially reversed these effects. These results suggested that Glut10 helps maintain the contractile phenotype of SMCs. The Glut10-TET2/3 signaling axis can arrest neointimal hyperplasia progression by improving mitochondrial function via the promotion of mtDNA demethylation in SMCs.


Assuntos
DNA Mitocondrial , Neointima , Animais , Humanos , Camundongos , Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Desmetilação , DNA Mitocondrial/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Mitocôndrias/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Neointima/patologia
17.
Adv Mater ; 35(16): e2207227, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36314402

RESUMO

The chronic rejection responses and side effects of the systematic administration of immunosuppressants are the main obstacles to heart allograft and patient survival. The development of xenotransplantation also urgently requires more efficient immune regulation strategies. Herein, it is demonstrated that lymph-node (LN)-targeted drug delivery can realize LN-specific immunomodulation with attenuated immune suppression on distant peripheral immune organs to effectively prolong long-term survival after heart transplantation in a chronic murine heart transplantation model. A chemokine C-C motif ligand 21 (CCL21) specific aptamer for LN targeting is decorated onto the surface of the hybrid nanoparticular delivery vector mainly composed of CaCO3 /CaP/heparin. The targeting delivery system can dramatically enhance accumulation of the loaded immunosuppressant, fingolimod hydrochloride (FTY720), in draining lymph nodes (dLNs) for inducing powerful immune suppression. By promoting the generation of endogenous regulatory T cells (Tregs ) and decreasing the proportion of effector T cells (Teffs ) in dLNs after heart transplantation, the LN-targeting strategy can effectively regulate local immune responses instead of systemic immunity, which reduces the incidence of long-term complications. This study provides an efficient strategy to improve the survival rate after organ transplantation by precise and localized immunoregulation with minimized side effects of immunosuppression.


Assuntos
Transplante de Coração , Linfonodos , Camundongos , Humanos , Animais , Sistemas de Liberação de Medicamentos , Imunossupressores/farmacologia , Cloridrato de Fingolimode/farmacologia , Tolerância Imunológica , Imunidade , Imunomodulação
18.
Yao Xue Xue Bao ; 47(12): 1710-7, 2012 Dec.
Artigo em Zh | MEDLINE | ID: mdl-23460980

RESUMO

DNA barcoding is a rapidly developing frontier technology in the world and will be useful in promoting the quality control and standardization of traditional Chinese medicine. Until now, many studies concerning DNA barcoding have focused on leaf samples but rarely on Chinese herbal medicine. There are three issues involved in DNA barcoding for traditional Chinese medicinal materials: (1) the extraction methods for total DNA of the rhizomes of the medicinal materials; (2) intra-specific variation among samples from different places of origin; (3) accuracy and stability of this method. In this study, Gentianae Macrophyllae Radix was used to verify the stability and accuracy of DNA barcoding technology. Five regions (ITS2, psbA-trnH, matK, rbcL, and ITS) were tested for their ability to identify 86 samples of Gentianae Macrophyllae Radix and their adulterants. After improving the DNA extraction method, genomic DNA from all samples was successfully obtained. To evaluate each barcode's utility for species authentication, PCR amplification efficiency, genetic divergence, and species authentication were assessed. Among all tested regions only ITS2 locus showed 100% of PCR amplification and identification efficiencies. Based on the established method, we successfully identified two samples of Gentianae Macrophyllae Radix bought in pharmacy to the original species.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Genoma de Planta , Gentiana/genética , Plantas Medicinais/genética , DNA de Plantas/análise , DNA de Plantas/genética , Contaminação de Medicamentos , Variação Genética , Gentiana/classificação , Raízes de Plantas/genética , Reação em Cadeia da Polimerase/métodos , Controle de Qualidade , Análise de Sequência de DNA , Especificidade da Espécie
19.
Oxid Med Cell Longev ; 2022: 7260305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855862

RESUMO

Despite being the gold-standard treatment for end-stage heart disease, heart transplantation is associated with acute cardiac rejection within 1 year of transplantation. The continuous application of immunosuppressants may cause side effects such as hepatic and renal toxicity, infection, and malignancy. Developing new pharmaceutical strategies to alleviate acute rejection after heart transplantation effectively and safely is of critical importance. In this study, we performed a murine model of MHC-full mismatch cardiac transplantation and showed that the combination of Rhodosin (Rho) and mycophenolate mofetil (MMF) could prevent acute rejection and oxidative stress injury and prolong the survival time of murine heart transplants. The use of Rho plus MMF in allografts improved the balance of Tregs/Teff cells, which had a protective effect on allotransplantation. We also isolated bone marrow-derived dendritic cells (BMDCs) and determined that Rho inhibited DC maturation by promoting mitochondrial fusion mainly through the mitochondrial fusion-related protein MFN1. Herein, we demonstrated that Rho, an active ingredient isolated from the plant Rhodiola rosea with antioxidant and anti-inflammatory activities, could efficiently alleviate acute rejection and significantly prolong murine heart allograft survival when used with a low dose of MMF. More importantly, we found that Rho restrained DC maturation by promoting mitochondrial fusion and decreasing reactive oxygen species (ROS) levels, which then alleviated acute rejection in murine cardiac transplantation. Interestingly, as a novel immunosuppressant, Rho has almost no side effects compared with other traditional immunosuppressants. Taken together, these results suggest that Rho has good clinical auxiliary applications as an effective immunosuppressant and antioxidant, and this study provides an efficient strategy to overcome the side effects of immunosuppressive agents that are currently used in organ transplantation.


Assuntos
Transplante de Rim , Ácido Micofenólico , Aloenxertos , Animais , Antioxidantes/farmacologia , Glucosídeos , Rejeição de Enxerto , Sobrevivência de Enxerto , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Camundongos , Dinâmica Mitocondrial , Ácido Micofenólico/farmacologia , Ácido Micofenólico/uso terapêutico , Fenóis
20.
Food Funct ; 13(14): 7666-7683, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35735054

RESUMO

Iron deficiency (ID) is a global nutritional deficiency that was shown to be involved in the pathogenesis of aortic aneurysm and dissection (AAD) in our previous studies. Some studies suggested that mitochondrial dynamics was involved in the apoptosis and phenotypic transformation of vascular smooth muscle cells (VSMCs). However, little is known about the role of mitochondrial dynamics in aortic medial degeneration (AMD) promoted by an iron deficient diet. The present study investigated the effect of ID on the phenotypic transformation of VSMCs, the progression of AMD, and the underlying mechanism. The expression of p-Drp1 (Ser616) and Fis1 was markedly upregulated in the aortic media of AAD patients and ApoE-/- mice with subcutaneous AngII osmotic pumps. ID facilitated the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs), which triggered excessive mitochondrial fission, induced the phenotypic transformation of VSMCs, and ultimately accelerated the progression of AMD. Furthermore, the present study indicated that an inhibitor of Drp1 could partially reverse this process. Maintaining iron balance in the human body may prevent the development of AAD.


Assuntos
Dissecção Aórtica , Deficiências de Ferro , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Animais , Humanos , Ferro/metabolismo , Camundongos , Dinâmica Mitocondrial , Músculo Liso Vascular , Miócitos de Músculo Liso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA