Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cancer Cell Int ; 22(1): 94, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193568

RESUMO

BACKGROUND: To investigate the genotype distribution of human papillomavirus (HPV) in infected Uygur and Han women in Xinjiang, China; analyze the HPV16 E6 gene polymorphism site and relationship with the development of cervical cancer. METHODS: The HPV16 E6 sequence was analyzed using the European standard prototype to perform an evolutionary tree. HPV16 E6-T295/T350, G295/G350, and T295/G350 GV230 vectors were stably transfected into cervical cancer C33A cells to analyze the cell proliferation, migration and invasion, apoptosis by CCK8 and clonogenic assays, transwell and cell scratch assays, FACS experiments. RESULTS: The total HPV infection rate was 26.390% (760/2879), whereas the Uygur 22.87% (196/857) and the Han was 27.89% (564/2022) (P < 0.05). Among 110 mutations, 65 cases of E6 genes were mutated at nucleotide 350 (T350G) with the leucine changing to valine (L83V). Moreover, there were 7 cases of E6 gene mutated at nucleotide 295 (T295G) with aspartic changing to glutamic (D64E). When E6 vector(s) of mutations sites were transfected into C33A cells, they were found to promote cellular proliferation, migration, invasion, and inhibit apoptosis. T295/G350-E6 was significantly stronger than G295/G350 and T295/T350, G295/G350 was significantly stronger than T295/T350 (P < 0.05). The T295/G350 had the strongest effect on C33A cells and G295/G350 was significantly stronger than T295/T350 (P < 0.05). CONCLUSIONS: The positive HPV infection rates differed between the Uygur and Han in Xinjiang, China, and the genotype distribution of infection was different. After transfecting C33A cells with different eukaryotic expression vectors, the T295/G350 mutation site promoted the proliferation, migration, and invasion of C33A cells to a greater extent than G295/G350; however, G295/G350 had a stronger effect than T295/T350.

2.
Appl Opt ; 61(2): 491-497, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200888

RESUMO

Due to the effect of bagging on fruit growth, non-destructive and in situ soluble solid content (SSC) in citrus detection remains a challenge. In this work, a new method for accurately quantifying SSC in citrus using hyperspectral imaging of citrus leaves was proposed. Sixty-five Ehime Kashi No. 28 citruses with surrounding leaves picked at two different times were picked for the experiment. Using the principal components analysis combined with Gaussian process regression model, the correlation coefficients of prediction-real value by citrus and its leaves in cross-validation were 0.972 and 0.986, respectively. In addition, the relationship between citrus leaves and SSC content was further explored, and the possible relationship between chlorophyll in leaves and SSC of citrus was analyzed. Comparing the quantitative analysis results by citrus and its leaves, the results show that the proposed method is a non-destructive and reliable method for determining the SSC by citrus leaves and has broad application prospects in indirect detection of citrus.


Assuntos
Citrus , Imageamento Hiperespectral , Análise dos Mínimos Quadrados , Aprendizado de Máquina , Folhas de Planta
3.
Appl Opt ; 60(20): 5826-5831, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34263801

RESUMO

Laser-induced breakdown spectroscopy (LIBS) was suitable for the identification of meat species due to fast and less sample preparation. However, the problem of low accuracy rate of the recognition model caused by improper selection of training set samples by random split has severely restricted the development of LIBS in meat detection. Sample set portioning based on the joint x-y distance (SPXY) method was applied for dividing the meat spectra into a training set and a test set. Then, the five kinds of meat samples (shrimp, chicken, beef, scallop, and pig liver) were classified by the support vector machine (SVM). With the random split method, Kennard-Stone method, and SPXY method, the recognition accuracies of the SVM model were 90.44%, 91.95%, and 94.35%, respectively. The multidimensional scaling method was used to visualize the results of the sample split for the interpretation of the classification. The results showed that the identification performance of the SPXY method combined with the SVM model was best, and the accuracy rates of shrimp, chicken, beef, scallop, and pig liver were 100.00%, 100.00%, 100.00%, 78.57%, and 92.00%, respectively. Moreover, to verify the broad adaptability of the SPXY method, the linear discriminant analysis model, the K-nearest neighbor model, and the ensemble learning model were applied as the meat species identification model. The results demonstrated that the accuracy rate of the classification model can be improved with the SPXY method. In light of the findings, the proposed sample portioning method can improve the accuracy rate of the recognition model using LIBS.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33122171

RESUMO

Nucleotide analogs targeting viral RNA polymerase have been proved to be an effective strategy for antiviral treatment and are promising antiviral drugs to combat the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. In this study, we developed a robust in vitro nonradioactive primer extension assay to quantitatively evaluate the efficiency of incorporation of nucleotide analogs by SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Our results show that many nucleotide analogs can be incorporated into RNA by SARS-CoV-2 RdRp and that the incorporation of some of them leads to chain termination. The discrimination values of nucleotide analogs over those of natural nucleotides were measured to evaluate the incorporation efficiency of nucleotide analog by SARS-CoV-2 RdRp. In agreement with the data published in the literature, we found that the incorporation efficiency of remdesivir-TP is higher than that of ATP and incorporation of remdesivir-TP caused delayed chain termination, which can be overcome by higher concentrations of the next nucleotide to be incorporated. Our data also showed that the delayed chain termination pattern caused by remdesivir-TP incorporation is different for different template sequences. Multiple incorporations of remdesivir-TP caused chain termination under our assay conditions. Incorporation of sofosbuvir-TP is very low, suggesting that sofosbuvir may not be very effective in treating SARS-CoV-2 infection. As a comparison, 2'-C-methyl-GTP can be incorporated into RNA efficiently, and the derivative of 2'-C-methyl-GTP may have therapeutic application in treating SARS-CoV-2 infection. This report provides a simple screening method that should be useful for evaluating nucleotide-based drugs targeting SARS-CoV-2 RdRp and for studying the mechanism of action of selected nucleotide analogs.


Assuntos
Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Nucleotídeos/farmacologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/genética , Alanina/farmacologia , Antivirais/química , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Nucleotídeos/química , RNA , RNA Viral/biossíntese , Proteínas não Estruturais Virais
5.
Cancer Cell Int ; 19: 65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930693

RESUMO

BACKGROUND: Xinjiang is one of the areas with the highest incidence of cervical cancer in China. Genetic variation in Human papillomavirus type 16 (HPV16) may increase the ability of the virus to mediate carcinogenesis and immune escape, which are risk factors for the progression of cervical cancer. We investigated polymorphism in HPV16 and the distribution of its sub-lineages in the region by analyzing the E6, E7 and long control region (LCR) gene sequences from women with HPV16-positive cervical samples in Xinjiang. METHODS: A total of 138 cases of cervical lesions and squamous cell carcinoma with infection of HPV16 virus were collected. The E6 and E7 genes and LCR of HPV16 virus were sequenced and compared with the HPV16 European prototype reference and other HPV16 mutants for single nucleotide polymorphisms. Neighbor-joining phylogenetic trees were constructed using E6, E7 and LCR sequences. RESULTS: Fourteen missense mutations were found in the E6 gene; the loci with the highest mutation frequency were T350G (36/75, 48%) and T178G (19/75, 25.3%). In the E7 gene, the locus with the highest mutation frequency was A647G (18/75, 24%). A total of 33 polymorphic sites were found in the LCR, of which T7447C (39/95, 40.1%) was the most frequent. CONCLUSION: HPV16 in Xinjiang is mainly of the European variant, followed by the Asian variant type; no Africa 1, 2 or Asia-America variant types were found.

6.
Cell Microbiol ; 19(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27376632

RESUMO

Influenza A virus evades host antiviral defense through hijacking innate immunity by its non-structural protein 1 (NS1). By using mass spectrometry, threonine 80 (T80) was identified as a novel phosphorylated residue in the NS1 of the influenza virus A/WSN/1933(H1N1). By generating recombinant influenza viruses encoding NS1 T80 mutants, the roles of this phosphorylation site were characterized during viral replication. The T80E (phosphomimetic) mutant attenuated virus replication, whereas the T80A (non-phosphorylatable) mutant did not. Similar phenotypes were observed for these mutants in a mouse model experiment. In further study, the T80E mutant decreased the binding capacity between NS1 and viral nucleoprotein (NP), leading to impaired viral ribonucleoprotein (vRNP)-mediated viral transcription. The T80E mutant was also unable to inhibit interferon (IFN) production by reducing the binding affinity between NS1 and retinoic acid-induced gene 1 protein (RIG-I), causing attenuation of virus replication. Taken together, the present study reveals that T80 phosphorylation of NS1 reduced influenza virus replication through controlling RIG-I-mediated IFN production and vRNP activity.


Assuntos
Proteína DEAD-box 58/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/fisiologia , Processamento de Proteína Pós-Traducional , Treonina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Substituição de Aminoácidos , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Evasão da Resposta Imune , Vírus da Influenza A Subtipo H1N1/genética , Espectrometria de Massas , Camundongos , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Fosforilação , Ligação Proteica , Proteínas de Ligação a RNA , Receptores Imunológicos , Treonina/genética , Proteínas do Core Viral , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Virulência
7.
Cell Microbiol ; 19(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27862840

RESUMO

The nucleoprotein (NP) of influenza A virus plays a crucial role in virus replication, infectivity, and host adaptation. As a major component of the viral ribonucleoprotein complexes (vRNP), NP initiates vRNP shuttling between the nucleus and cytoplasm in the host cell. However, the characteristics of the nucleocytoplasmic shuttling of NP from H1N1 influenza A virus still remain unclear. In the present study, the subcellular localization and the related key residues of the H1N1 influenza virus NP were identified and evaluated. The NP of influenza virus A/WSN/33 (H1N1; WSN) displayed a more obvious nuclear accumulation than A/Anhui/1/2013 (H7N9; AH) and A/chicken/Shandong/lx1023/2007 (H9N2; SD). NP residue K4, located in NLS1, and residue F253, located in NES3, from WSN NP are not conserved in H7N9 and H9N2, which instead encode Q4 and I253, respectively. Crucially, these residues are involved in the regulation of NP nucleocytoplasmic shuttling through interactions with CRM1 and importin-α. Moreover, residues at position 253 also play important roles in the replication of the virus, resulting in an increase in vRNP polymerase activity and an alteration of the cell tropism and pathogenicity in mice. The present data revealed a pivotal role of the Q4 and I253 residues of NP from H7N9 in enhancing the cytoplasmic accumulation of NP and vRNP activity compared to the K4 and F253 residues in WSN-NP. In addition, an F253I substitution in the NP of WSN altered the survival ratio of infected mice and the growth curve in infected avian-origin cells (DF-1). The current data indicate that the F253I mutation results in attenuated pathogenicity of the virus in mice and altered cell tropism. The present study demonstrated the dissimilarity in subcellular NP transport processes between H1N1 virus WSN and other influenza A virus strains, as well as uncovered the mechanism responsible for this difference.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Nucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Núcleo Celular/virologia , Citoplasma/virologia , Cães , Feminino , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Ligação Proteica , Transporte Proteico , Tropismo Viral , Replicação Viral
8.
J Virol ; 90(14): 6263-6275, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27122586

RESUMO

UNLABELLED: Influenza A and B virus infections both cause a host innate immunity response. Here, we report that the robust production of type I and III interferons (IFNs), IFN-stimulated genes, and proinflammatory factors can be induced by influenza B virus rather than influenza A virus infection in alveolar epithelial (A549) cells during early infection. This response is mainly dependent on the retinoic acid-inducible gene I (RIG-I)-mediated signaling pathway. Infection by influenza B virus promotes intense Lys63-linked ubiquitination of RIG-I, resulting in cytokine eruption. It is known that the influenza A virus NS1 protein (NS1-A) interacts with RIG-I and TRIM25 to suppress the activation of RIG-I-mediated signaling. However, the present results indicate that the influenza B virus NS1 protein (NS1-B) is unable to interact with RIG-I but engages in the formation of a RIG-I/TRIM25/NS1-B ternary complex. Furthermore, we demonstrate that the N-terminal RNA-binding domain (RBD) of NS1-B is responsible for interaction with TRIM25 and that this interaction blocks the inhibitory effect of the NS1-B C-terminal effector domain (TED) on RIG-I ubiquitination. Our findings reveal a novel mechanism for the host cytokine response to influenza B virus infection through regulatory interplay between host and viral proteins. IMPORTANCE: Influenza B virus generally causes local mild epidemics but is occasionally lethal to individuals. Existing studies describe the broad characteristics of influenza B virus epidemiology and pathology. However, to develop better prevention and treatments for the disease, determining the concrete molecular mechanisms of pathogenesis becomes pivotal to understand how the host reacts to the challenge of influenza B virus. Thus, we aimed to characterize the host innate immune response to influenza B virus infection. Here, we show that vigorous Lys63-linked ubiquitination of RIG-I and cytokine eruption dependent on RIG-I-mediated signal transduction are induced by virus infection. Additionally, TRIM25 positively regulates RIG-I-mediated signaling by ablating the inhibitory function of NS1-B on RIG-I ubiquitination.


Assuntos
Citocinas/metabolismo , Vírus da Influenza A/patogenicidade , Vírus da Influenza B/patogenicidade , Influenza Humana/imunologia , Lisina/metabolismo , Receptores do Ácido Retinoico/metabolismo , Ubiquitina/metabolismo , Células A549 , Citocinas/genética , Humanos , Imunidade Inata/imunologia , Mediadores da Inflamação/metabolismo , Influenza Humana/metabolismo , Influenza Humana/virologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferons/genética , Interferons/metabolismo , Lisina/química , Lisina/genética , Mutagênese Sítio-Dirigida , Mutação/genética , Processamento de Proteína Pós-Traducional , Receptores do Ácido Retinoico/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
9.
Cancer Cell Int ; 17: 88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051711

RESUMO

BACKGROUND: Cervical cancer is a major cause of death in women worldwide. Interferon-induced transmembrane protein 1 (IFITM1) is involved in antivirus defense, cell adhesion, and carcinogenesis in different tissues. However, the role of IFITM1 gene in cervical squamous cell cancer is unclear. METHODS: To explore the role of IFITM1 in carcinogenesis of cervical cancer, we investigated the expression of IFITM1 gene in cervical squamous cell carcinoma. IFITM1 mRNA level was measured by real-time quantitative RT-PCR in cervical cancer tissues and their adjacent normal tissues. IFITM1 protein level was measured by immunohistochemistry. Methylation in the IFITM1 gene promoter was detected by methylation-specific PCR. We then transfected HeLa cells with IFITM1 expression vector or control vector. IFITM1 expression was examined; cell migration and invasion were analyzed by wound healing assay and matrigel-coated transwell migration assays, respectively. HeLa cell proliferation was measured by cell counting kit-8 assay and cell cycle analysis. Cell apoptosis was analyzed by Annexin V/propidium iodide double staining assay. RESULTS: The difference in IFITM1 protein expression between samples from chronic cervicitis and cervical carcinoma was statistically significant (P < 0.01). Ki-67 and PCNA protein expression levels were significantly higher in cervical cancer tissues than in their corresponding cervicitis tissues (P < 0.05 and P < 0.001, respectively). IFITM1 mRNA level was significantly lower in cervical cancer tissues than in normal cervical tissues (P < 0.05). Methylation of the IFITM1 gene promoter was significantly higher in cervical cancer than in normal cervical tissues (P < 0.05). Transfection of the IFITM1 pcDNA3.1 construct decreased cell migration and invasion of HeLa cells, inhibited cell proliferation, and increased cell apoptosis. CONCLUSION: IFITM1 gene expression may reduce the proliferation, migration, and invasion of cervical squamous cancer cells.

11.
J Virol ; 89(11): 5822-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25787277

RESUMO

UNLABELLED: The nucleoprotein (NP) is a major component of the viral ribonucleoprotein (vRNP) complex. During the replication of influenza virus, the vRNP complex undergoes nuclear-cytoplasmic shuttling, during which NP serves as one of the determinants. To date, many phosphorylation sites on NP have been identified, but the biological functions of many of these phosphorylation sites remain unknown. In the present study, the functions of the phosphorylation sites S9, Y10, and Y296 were characterized. These residues are highly conserved, and their phosphorylation was essential for virus growth in cell culture and in a mouse model by regulating the activity of the viral polymerase and the nuclear-cytoplasmic shuttling of NP. The phosphorylation and dephosphorylation of S9 and Y10 controlled nuclear import of NP by affecting the binding affinity between NP and different isoforms of importin-α. In addition, the phosphorylation of Y296 caused nuclear retention of NP by reducing the interaction between NP and CRM1. Furthermore, tyrosine phosphorylation of NP during the early stage of virus infection was ablated when Y296 was mutated to F. However, at later stages of infection, it was weakened by the Y10F mutation. Taken together, the present data indicate that the phosphorylation and dephosphorylation of NP control the shuttling of NP between the nucleus and the cytoplasm during virus replication. IMPORTANCE: It is well known that phosphorylation regulates the functions of viral proteins and the life cycle of influenza A virus. As NP is the most abundant protein in the vRNP complex of influenza A virus, several phosphorylation sites on this protein have been identified. However, the functions of these phosphorylation sites were unknown. The present study demonstrates that the phosphorylation status of these sites on NP can mediate its nuclear-cytoplasmic shuttling, which drives the trafficking of vRNP complexes in infected cells. The present data suggest that the phosphorylated residues of NP are multistep controllers of the virus life cycle and new targets for the design of anti-influenza drugs.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/metabolismo , Animais , Linhagem Celular , Sequência Conservada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo , Fosforilação , Ligação Proteica , Transporte Proteico , alfa Carioferinas/metabolismo
12.
J Virol ; 89(1): 2-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320305

RESUMO

UNLABELLED: The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE: To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been systematically studied. Here, the H9N2 virus was used as a genetic backbone to evaluate the virulence genes of H7N9 virus in vitro and in vivo. Our data indicate that the PB2, M, and NP genes play important roles in viral infection in mice and, together with HA and NA, contribute to the high infectivity of the H7N9 virus in humans.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Embrião de Galinha , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Humanos , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/fisiologia , Camundongos Endogâmicos BALB C , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Genética Reversa , Virulência , Replicação Viral
13.
BMC Cancer ; 14: 417, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24913332

RESUMO

BACKGROUND: Cervical carcinoma is the second most common cancer and is an important cause of death in women worldwide. CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription factors that regulate cellular differentiation and proliferation in a variety of tissues. However, the role of C/EBPα gene in cervical cancer is still not clear. METHODS: We investigated the expression of C/EBPα gene in cervical squamous cell carcinoma. C/EBPα mRNA level was measured by real-time quantitative RT-PCR in cervical cancer tissues and their adjacent normal tissues. C/EBPα protein level was measured by immunohistochemistry. Methylation in the promoter of C/EBPα gene was detected by MALDI TOF MassARRAY. We transfected HeLa cells with C/EBPα expression vector. C/EBPα expression in HeLa cells was examined and HeLa cell proliferation was measured by MTT assay and HeLa cells migration was analyzed by matrigel-coated transwell migration assays. RESULTS: There were significant difference in C/EBPα protein expression between chronic cervicitis and cervical carcinoma (P < 0.001). CEBPα mRNA level was significantly lower in cervical cancer tissues than in normal cervical tissues (P < 0.01). Methylation of the promoter of CEBPα gene in CpG 5, CpG-14.15, CpG-19.20 were significantly higher in cervical cancer than in normal cervical tissues (P < 0.05, P < 0.01, P < 0.05, respectively). CEBPα pcDNA3.1 construct transfected into HeLa cells inhibited cell proliferation and decreased cell migration. CONCLUSIONS: Our results indicate that reduced C/EBPα gene expression may play a role in the development of cervical squamous cell carcinoma.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias do Colo do Útero/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Movimento Celular , Sobrevivência Celular , Metilação de DNA , Regulação para Baixo , Feminino , Expressão Gênica , Células HeLa , Humanos , Imuno-Histoquímica , Gradação de Tumores , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção , Neoplasias do Colo do Útero/patologia
14.
Medicine (Baltimore) ; 102(2): e32559, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637958

RESUMO

OBJECTIVE: To explore and analyze the expression of eukaryotic translation elongation factor 1 alpha 2 (eEF1A2) gene in cervical cancer tissues, its relationship with patient survival, gene mutations, and changes in copy number in cervical cancer and chronic cervicitis tissues. METHODS: The expression of the eEF1A2 gene in cervical cancer and its relationship with patient survival were analyzed using gene expression profile interactive analysis. Changes in eEF1A2 expression in cervical cancer tissues were analyzed using cBioPortal, a portal for cancer genomics analysis. The eEF1A2 copy number in cervical cancer tissues and chronic cervicitis tissues was determined by real-time fluorescence quantitative polymerase chain reaction. The relationship between the expression of eEF1A2 protein and the clinical stage, pathological grade, and patient survival of cervical cancer was analyzed by the database: The Human Protein Atlas, an integrated repository portal for tumor-immune system interactions. RESULTS: Gene expression profile interactive analysis database analysis showed no significant differences in the expression of eEF1A2 between cervical cancer and normal cervical tissues (P > .05). The eEF1A2 gene expression level was not correlated with the survival of cervical cancer patients (P > .05). Analysis of the cBioPortal database showed that 18 of 297 cervical cancer patients had eEF1A2 gene changes, including missense mutation, splice mutation, amplification, and messenger RNA increase. There was no significant difference in eEF1A2 gene copy number between cervical cancer and chronic cervicitis (P > .05). The Human Protein Atlas and an integrated repository portal for tumor-immune system interactions database analysis of immunohistochemical data showed that eEF1A2 protein expression was no significant difference in clinical stage, pathological grade and patient survival of cervical cancer (P > .05). CONCLUSION: The eEF1A2 gene was mutated in cervical cancer tissues. The eEF1A2 gene copy number was not associated with changes in the expression of the eEF1A2 gene in cervical cancer tissues.


Assuntos
Dosagem de Genes , Fator 1 de Elongação de Peptídeos , Neoplasias do Colo do Útero , Cervicite Uterina , Feminino , Humanos , Expressão Gênica , Mutação de Sentido Incorreto , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Neoplasias do Colo do Útero/genética , Cervicite Uterina/genética
15.
Biomed Res Int ; 2022: 5793912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937409

RESUMO

Cervical cancer (CC) is the second main reason of cancer-related deaths in women around the world. Long intergenic nonprotein coding RNA 707, which is known as LINC00707, has been elucidated to facilitate the progression of multifarious tumors, but how it may exert functions in CC has not been elucidated yet. By using quantitative real-time RT-PCR (RT-qPCR), we identified the expression pattern LINC00707 may possess in CC. Loss-of-function assays including Cell Counting Kit-8 (CCK-8), colony formation, and transferase-mediated dUTP nick-end labeling (TUNEL) assays were taken to verify the effects of LINC00707 inhibition on CC cell proliferation and apoptosis. The downstream RNAs were selected through bioinformatics prediction, and their interaction with LINC00707 was verified through mechanism assays including the luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay. According to results, LINC00707 was upregulated in CC cells, and LINC00707 insufficiency inhibited cell proliferation while facilitating cell apoptosis. MicroRNA (miRNA) miR-374c-5p interacted with LINC00707, and syndecan-4 (SDC4) was verified to be the downstream target gene. Data of rescue assays proved that LINC00707 could promote CC cell malignancy via the miR-374c-5p/SDC4 axis, which revealed a potential treatment option for CC.


Assuntos
RNA Longo não Codificante , Neoplasias do Colo do Útero , Proliferação de Células , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sindecana-4 , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
16.
Reprod Sci ; 29(6): 1809-1821, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35334101

RESUMO

Plenty of pieces of evidence suggest that the resistance to radiotherapy greatly influences the therapeutic effect in cervical cancer (CCa). MicroRNAs (miRNAs) have been reported to regulate cellular processes by acting as tumor suppressors or promoters, thereby driving radioresistance or radiosensitivity. Meanwhile, it has been reported that microRNA-1323 (miR-1323) widely participates in cancer progression and radiotherapy effects. However, the role of miR-1323 is still not clear in CCa. Hence, in this study, we are going to investigate the molecular mechanism of miR-1323 in CCa cells. In the beginning, miR-1323 was found aberrantly upregulated in CCa cells via RT-qPCR assay. Functional assays indicated that miR-1323 was transferred by cancer-associated fibroblasts-secreted (CAFs-secreted) exosomes and miR-1323 downregulation suppressed cell proliferation, migration, invasion, and increased cell radiosensitivity in CCa. Mechanism assays demonstrated that miR-1323 targeted poly(A)-binding protein nuclear 1 (PABPN1). Besides, PABPN1 recruited insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to regulate glycogen synthase kinase 3 beta (GSK-3ß) and influenced Wnt/ß-catenin signaling pathway. Therefore, rescue experiments were implemented to validate that PABPN1 overexpression rescued the inhibited cancer development and radioresistance induced by the miR-1323 inhibitor. In conclusion, miR-1323 was involved in CCa progression and radioresistance which might provide a novel insight for CCa treatment.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , MicroRNAs , Neoplasias do Colo do Útero , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Exossomos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , MicroRNAs/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/radioterapia , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
17.
Sci China Life Sci ; 64(4): 633-643, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32803713

RESUMO

Mutations in viral proteins can lead to the cold adaption of influenza A virus and the cold-adapted virus is an important vaccination instrument. Here, we identify a novel strain of influenza A virus with cold sensitivity conferred by a mutation at a phosphorylation site within the nucleoprotein (NP). The highly conserved tyrosine 385 residue (Y385) of NP was identified as a phosphorylation site by mass spectrometry. The constructive NP phosphorylation mimicked by Y385E mutation was fatal for virus replication, while the continuous Y385 dephosphorylation mimicked by Y385F mutation had little impact on virus replication in vitro. Notably, the Y385F virus showed much lower replicative capacity in turbinates of mice compared with the wild type virus. Moreover, the replication of Y385F virus was significantly reduced in both A549 and MDCK cells grown at 33°C, when compared to that at 37°C. These results indicated that the Y385F mutation led to cold sensitivity of virus. We further found that the cold sensitivity of Y385F virus could be attributed to diminished NP oligomerization rather than any changes in intracellular localization. Taken together, these findings suggest that the phosphorylation of NP may be a critical factor that regulates the temperature sensitivity of influenza A virus.


Assuntos
Temperatura Baixa , Vírus da Influenza A Subtipo H1N1/genética , Mutação , Proteínas do Nucleocapsídeo/genética , Tirosina/genética , Células A549 , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Cães , Feminino , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Infecções por Orthomyxoviridae/virologia , Fosforilação , Multimerização Proteica , Tirosina/metabolismo , Virulência/genética , Replicação Viral/genética
18.
Front Microbiol ; 10: 1816, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440228

RESUMO

Phosphorylation and dephosphorylation of nucleoprotein (NP) play significant roles in the life cycle of influenza A virus (IAV), and the biological functions of each phosphorylation site on NP are not exactly the same in controlling viral replication. Here, we identified tyrosine 78 residue (Y78) of NP as a novel phosphorylation site by mass spectrometry. Y78 is highly conserved, and the constant NP phosphorylation mimicked by Y78E delayed NP nuclear export through reducing the binding of NP to the cellular export receptor CRM1, and impaired virus growth. Furthermore, the tyrosine kinase inhibitors Dasatinib and AG490 reduced Y78 phosphorylation and accelerated NP nuclear export, suggesting that the Janus and Src kinases-catalyzed Y78 phosphorylation regulated NP nuclear export during viral replication. More importantly, we found that the NP phosphorylation could suppress NP ubiquitination via weakening the interaction between NP and E3 ubiquitin ligase TRIM22, which demonstrated a cross-talk between the phosphorylation and ubiquitination of NP. This study suggests that the phosphorylation status of Y78 regulates IAV replication by inhibiting the nuclear export and ubiquitination of NP. Overall, these findings shed new light on the biological roles of NP phosphorylation, especially its negative role in NP ubiquitination.

19.
Sci Rep ; 9(1): 3468, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837516

RESUMO

We investigated the infection status and genotype distribution of human papillomavirus (HPV) in women of different ages and various ethnic groups in the Yili region, Xinjiang, China. We checked the HPV genotypes of 3,445 samples of exfoliated cervical cells using the PCR-reverse dot blot method. The total infection rate of HPV was 25.60% (882/3,445). The ethnic stratification showed that the infection rates were 22.87% (196/857) in Uygur, 21.55% (122/566) in Kazak, and 27.89% (564/2,022) in Han individuals. The most prevalent high-risk genotypes were HPV16, HPV52, and HPV53 in Uygur and Kazak and HPV16, HPV52, and HPV58 in Han ethnic groups. The age stratification showed that the infection rates in Han, Uygur, and Kazak women were up to 40.9% (61/149) in those aged 26-30 years, 41.5% (22/53) in those over 61 years old, and 30.2% (29/96) in those 46-50 years old, respectively. Therefore, HPV infection and HPV genotype distribution varied among the different age groups of the three ethnic groups.


Assuntos
Colo do Útero/virologia , Etnicidade , Papillomaviridae , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , China/epidemiologia , China/etnologia , Técnicas Citológicas , Feminino , Genótipo , Humanos , Programas de Rastreamento , Papillomaviridae/genética , Vigilância em Saúde Pública , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/etiologia , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/epidemiologia , Displasia do Colo do Útero/etiologia
20.
Cell Rep ; 27(6): 1875-1885.e5, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067470

RESUMO

Naproxen is a non-steroidal anti-inflammatory drug that has previously been shown to exert antiviral activity against influenza A virus by inhibiting nucleoprotein (NP) binding to RNA. Here, we show that naproxen is a potential broad, multi-mechanistic anti-influenza virus therapeutic, as it inhibits influenza B virus replication both in vivo and in vitro. The anti-influenza B virus activity of naproxen is more efficient than that of the commonly used neuraminidase inhibitor oseltamivir in mice. Furthermore, the NP of influenza B virus (BNP) has a higher binding affinity to naproxen than influenza A virus NP (ANP). Specifically, naproxen targets the NP at residues F209 (BNP) and Y148 (ANP). This interaction antagonizes the nuclear export of NP normally mediated by the host export protein CRM1. This study reveals a crucial mechanism of broad-spectrum anti-influenza virus activity of naproxen, suggesting that the existing drug naproxen may be used as an anti-influenza drug.


Assuntos
Antivirais/farmacologia , Núcleo Celular/metabolismo , Vírus da Influenza B/efeitos dos fármacos , Naproxeno/farmacologia , Nucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Galinhas , Cães , Feminino , Humanos , Carioferinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fenilalanina/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Replicação Viral/efeitos dos fármacos , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA