RESUMO
Human respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5' to 3') a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.
Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Chlorocebus aethiops , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vacinas Atenuadas/genética , Células Vero , Replicação ViralRESUMO
INTRODUCTION: The efficacy of intra-articular fentanyl supplementation for pain control after knee arthroscopy remains controversial. We conduct a systematic review and meta-analysis to explore the influence of intra-articular fentanyl supplementation for pain intensity after arthroscopic knee surgery. METHODS: We searched PubMed, EMbase, Web of Science, EBSCO, and Cochrane Library databases through May 2019 for randomized controlled trials (RCTs) assessing the efficacy and safety of intra-articular fentanyl supplementation for arthroscopic knee surgery. This meta-analysis is performed using the random-effects model. RESULTS: Four RCTs are included in the meta-analysis. Overall, compared with control group after knee arthroscopy, intra-articular fentanyl supplementation is associated with reduced pain scores at 1 h (standard mean difference (Std MD) = -3.50; 95% confidence interval (CI) = -5.68 to -1.32; p = 0.002), 2 h (Std MD = -4.73; 95% CI = -8.75 to -0.71; p = 0.02), and 8 h (Std MD = -5.02; 95% CI = -9.73 to -0.30; p = 0.04) but shows no substantial impact on pain scores at 4 h (Std MD = -3.94; 95% CI = -7.93 to 0.05; p = 0.05) or the supplementary analgesia (risk ratio = 0.56; 95% CI = 0.09-3.59; p = 0.54). CONCLUSIONS: Intra-articular fentanyl supplementation does benefit in pain control after knee arthroscopy.
Assuntos
Analgésicos Opioides/administração & dosagem , Artroscopia , Fentanila/administração & dosagem , Articulação do Joelho/cirurgia , Dor Pós-Operatória/tratamento farmacológico , Humanos , Injeções Intra-Articulares , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do TratamentoRESUMO
Human respiratory syncytial virus (RSV) is the single most important cause of lower respiratory tract disease in infants and young children and a major viral agent responsible for respiratory tract disease in immunosuppressed individuals and the elderly, but no vaccines and antiviral drugs are available. Herein the recombinant RSV (rRSV) encoding enhanced green fluorescence protein (EGFP, rRSV-EGFP) was constructed and the potential for screening anti-RSV drugs was investigated. The recombinant plasmid of pBRATm-rRSV-EGFP, containing T7 transcription cassette composed of T7 promoter, RSV antigenomic cDNA with EGFP gene, HDV ribozyme (δ), and T7 terminator in the order of 5' to 3', was constructed and cotransfected into BHK/T7-9 cells together with helper plasmids encoding N, P, L, and M2-1 gene, respectively. The rescued rRSV-EGFP was confirmed by increasing expression of EGFP over blind passages and by RT-PCR. rRSV-EGFP was comparable to the other two recombinant RSVs encoding red fluorescent protein (RFP, rRSV-RFP) or luciferase (Luc, rRSV-Luc) in the growth kinetic, and there was a difference in sensitivity between them for screening anti-RSV agents based on infection of HEp-2 cells. The EGFP-encoding rRSV has been constructed and rescued successfully and has the potential for high-throughput anti-RSV drug screening in vitro.
Assuntos
Antivirais/farmacologia , Proteínas de Fluorescência Verde/genética , Recombinação Genética/genética , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Fluorescência , Células HEK293 , Humanos , RNA Mensageiro/genética , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Células Vero , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacosRESUMO
Human respiratory syncytial virus (RSV) is the most important cause of serious lower respiratory tract infection in infants, the elderly, and the immunocompromised population. There is no licensed vaccine against RSV until now. It has been reported that targeting antigen to DEC205, a phagocytosis receptor on dendritic cells (DCs), could induce enhanced CD4+ and CD8+ T cell responses in mice. To develop RSV DNA vaccine and target the encoded antigen protein to DCs, the ectodomain of fusion glycoprotein (sF, amino acids: 23-524) of RSV was fused with anti-DEC205 single-chain Fv fragment (scDEC) and designated scDECF. Following successful expression from the recombinant plasmid of pVAX1/scDECF, the recombinant protein of scDECF was found capable of specifically binding to DEC205 receptor on CHOmDEC205 cells, and facilitating uptake of RSV F by DC2.4 cells in vitro. Furthermore, the higher levels of RSV-specific IgG antibody responses and neutralization antibody titers, as well as RSV F-specific CD8+ T cell responses were induced in mice immunized intramuscularly by pVAX1/scDECF than by the control plasmid of pVAX1/scISOF encoding sF protein fused with isotype matched control single-chain Fv fragment (scISO). Compared with pVAX1/scISOF, both the ratio of IgG2a/IgG1, >1, and the enhanced IFN-γ cytokine were induced in mice following pVAX1/scDECF immunization, which exhibited a Th1 dominant response in pVAX1/scDECF vaccinated mice. Notably, the elevated efficiency of RSV F protein bound by DCs in vivo could also be observed in mice inoculated by pVAX1/scDECF. Collectively, these results demonstrate the enhanced IgG and CD8+ T cell immune responses have been induced successfully by DNA vaccine against RSV by targeting F antigen to DCs via the DEC205 receptor, and this DC-targeting vaccine strategy merits further investigation.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Vacinas Virais/imunologia , Idoso , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , ELISPOT , Humanos , Imunidade Celular , Hospedeiro Imunocomprometido , Lactente , Recém-Nascido , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Anticorpos de Cadeia Única/genética , Vacinação , Vacinas de DNA , Vacinas Virais/genéticaRESUMO
BACKGROUND: Oxidative stress may be involved in occurrence of postoperative delirium (POD) and cognitive dysfunction (POCD). 8-iso-Prostaglandin F2α (8-iso-PGF2α), an isoprostane derived from arachidonic acid via lipid peroxidation, is considered a gold standard for measuring oxidative stress. The present study aimed to investigate the ability of postoperative plasma 8-iso-PGF2α levels to predict POD and POCD in elderly patients undergoing hip fracture surgery. METHODS: Postoperative plasma 8-iso-PGF2α levels of 182 patients were measured by an enzyme-linked immunosorbent assay. We assessed the relationships between plasma 8-iso-PGF2α levels and the risk of POD and POCD using a multivariate analysis. RESULTS: Plasma 8-iso-PGF2α levels and age were identified as the independent predictors for POD and POCD. Based on areas under receiver operating characteristic curve, the predictive values of 8-iso-PGF2α were obviously higher than those of age for POD and POCD. In a combined logistic-regression model, 8-iso-PGF2α significantly enhanced the areas under curve of age for prediction of POD and POCD. CONCLUSIONS: Postoperative plasma 8-iso-PGF2α levels may have the potential to predict POD and POCD in elder patients undergoing hip fracture surgery.