Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Org Biomol Chem ; 14(2): 631-638, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26541578

RESUMO

The histone methyltransferase MLL1 has been linked to translocation-associated gene fusion in childhood leukemias and is an attractive drug target. High-throughput biochemical analysis of MLL1 methyltransferase activity requires the production of at least a trimeric complex of MLL1, RbBP5 and WDR5 to elicit robust activity. Production of trimeric and higher order MLL1 complexes in the quantities and reproducibility required for high-throughput screening presents a significant impediment to MLL1 drug discovery efforts. We present here a small molecule fluorescent ligand (FL-NAH, 6) that is able to bind to the S-adenosylmethionine (SAM) binding site of MLL1 in a manner independent of the associated complex members. We have used FL-NAH to develop a fluorescence polarization-based SAM displacement assay in a 384-well format targeting the MLL1 SET domain in the absence of associated complex members. FL-NAH competes with SAM and is displaced from the MLL1 SET domain by other SAM-binding site ligands with Kdisp values similar to the higher-order complexes, but is unaffected by the H3 peptide substrate. This assay enables screening for SAM-competitive MLL1 inhibitors without requiring the use of trimeric or higher order MLL1 complexes, significantly reducing screening time and cost.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Fluorescência , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/metabolismo , S-Adenosilmetionina/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ligação Competitiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/economia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ligantes , Estrutura Molecular , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Fatores de Tempo
2.
Biochemistry ; 54(51): 7514-23, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26529540

RESUMO

Type I protein arginine methyltransferases (PRMTs) catalyze asymmetric dimethylation of various proteins, and their dysregulations often correlate with tumorigenesis or developmental deficiency. Recent studies have focused on the in vivo substrate identification and the enzyme mechanism with peptide substrates. However, how PRMTs recognize substrates at the protein level remains unknown. PRMT8 is one of the least characterized type I PRMTs, and its crystal structure has not been reported. Here, we report the crystal structure of the PRMT8:SAH complex, identify a new non-histone protein substrate NIFK, and uncover a previously unknown regulatory region specifically required for recognizing NIFK. Instead of the canonical dimeric structure for other type I PRMTs, PRMT8 exists as a tetramer in solution. Using X-ray crystallography in combination with small-angle X-ray scattering experiments, the dimer of dimers architecture in which two PRMT8 dimers are held together mainly by ß strand interactions was proposed. Mutation of PRMT8-ß15 impedes the methylation of NIFK but still allows methylation of the histone H2A/H2B dimer or a peptide substrate, suggesting a possible structural basis for recognition of protein substrates. Lastly, we observed two PRMT8 dimer orientations resulting in open (without SAH) and closed (with SAH bound) conformations. The comparison between open and closed conformations may provide useful information for PRMT1/8 inhibitor design.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Regulação Alostérica , Biopolímeros/química , Biopolímeros/metabolismo , Catálise , Cristalografia por Raios X , Conformação Proteica , Especificidade por Substrato
3.
Chembiochem ; 16(18): 2605-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26455821

RESUMO

Histone acetyltransferases (HATs) are key players in the epigenetic regulation of gene function. The recent discovery of diverse HAT substrates implies a broad spectrum of cellular functions of HATs. Many pathological processes are also intimately associated with the dysregulation of HAT levels and activities. However, detecting the enzymatic activity of HATs has been challenging, and this has significantly impeded drug discovery. To advance the field, we developed a convenient one-pot, mix-and-read strategy that is capable of directly detecting the acylated histone product through a fluorescent readout. The strategy integrates three technological platforms-bioorthogonal HAT substrate labeling, alkyne-azide click chemistry, and quenching FRET-into one system for effective probing of HAT enzyme activity.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Histona Acetiltransferases/análise , Alcinos/química , Azidas/química , Catálise , Química Click , Cobre/química , Reação de Cicloadição , Cinética
4.
J Chem Inf Model ; 55(12): 2623-32, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26562720

RESUMO

Protein arginine methyltransferases (PRMTs) catalyze the posttranslational methylation of arginine, which is important in a range of biological processes, including epigenetic regulation, signal transduction, and cancer progression. Although previous studies of PRMT1 mutants suggest that the dimerization arm and the N-terminal region of PRMT1 are important for activity, the contributions of these regions to the structural architecture of the protein and its catalytic methylation activity remain elusive. Molecular dynamics (MD) simulations performed in this study showed that both the dimerization arm and the N-terminal region undergo conformational changes upon dimerization. Because a correlation was found between the two regions despite their physical distance, an allosteric pathway mechanism was proposed based on a network topological analysis. The mutation of residues along the allosteric pathways markedly reduced the methylation activity of PRMT1, which may be attributable to the destruction of dimer formation and accordingly reduced S-adenosyl-L-methionine (SAM) binding. This study provides the first demonstration of the use of a combination of MD simulations, network topological analysis, and biochemical assays for the exploration of allosteric regulation upon PRMT1 dimerization. These findings illuminate the results of mechanistic studies of PRMT1, which have revealed that dimer formation facilitates SAM binding and catalytic methylation, and provided direction for further allosteric studies of the PRMT family.


Assuntos
Modelos Moleculares , Simulação de Dinâmica Molecular , Proteína-Arginina N-Metiltransferases/química , S-Adenosilmetionina/metabolismo , Regulação Alostérica , Bioensaio , Sequência Conservada , Dimerização , Eletroforese em Gel Bidimensional , Fluorescência , Metilação , Estrutura Secundária de Proteína , S-Adenosilmetionina/química
5.
J Biol Chem ; 287(42): 34917-34926, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22918831

RESUMO

The MYST family of histone acetyltransferases (HATs) plays critical roles in diverse cellular processes, such as the epigenetic regulation of gene expression. Lysine autoacetylation of the MYST HATs has recently received considerable attention. Nonetheless, the mechanism and function of the autoacetylation process are not well defined. To better understand the biochemical mechanism of MYST autoacetylation and the impact of autoacetylation on the cognate histone acetylation, we carried out detailed analyses of males-absent-on-the-first (MOF), a key member of the MYST family. A number of mutant MOF proteins were produced with point mutations at several key residues near the active site of the enzyme. Autoradiography and immunoblotting data showed that mutation of these residues affects the autoacetylation activity and HAT activity of MOF by various degrees demonstrating that MOF activity is highly sensitive to the chemical changes in those residues. We produced MOF protein in the deacetylated form by using a nonspecific lysine deacetylase. Interestingly, both the autoacetylation activity and the histone acetylation activity of the deacetylated MOF were found to be very close to that of wild-type MOF, suggesting that autoacetylation of MOF only marginally modulates the enzymatic activity. Also, we found that the autoacetylation rates of MOF and deacetylated MOF were much slower than the cognate substrate acetylation. Thus, autoacetylation does not seem to contribute to the intrinsic enzymatic activity in a significant manner. These data provide new insights into the mechanism and function of MYST HAT autoacetylation.


Assuntos
Histona Acetiltransferases/metabolismo , Acetilação , Domínio Catalítico , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Mutação Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Am Chem Soc ; 135(21): 7791-4, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23659802

RESUMO

Elucidating biological and pathological functions of protein lysine acetyltransferases (KATs) greatly depends on the knowledge of the dynamic and spatial localization of their enzymatic targets in the cellular proteome. We report the design and application of chemical probes for facile labeling and detection of substrates of the three major human KAT enzymes. In this approach, we create engineered KATs in junction with synthetic Ac-CoA surrogates to effectively label KAT substrates even in the presence of competitive nascent cofactor acetyl-CoA. The functionalized and transferable acyl moiety of the Ac-CoA analogs further allowed the labeled substrates to be probed with alkynyl or azido-tagged fluorescent reporters by the copper-catalyzed azide-alkyne cycloaddition. The synthetic cofactors, in combination with either native or rationally engineered KAT enzymes, provide a versatile chemical biology strategy to label and profile cellular targets of KATs at the proteomic level.


Assuntos
Acetilcoenzima A/metabolismo , Acetiltransferases/metabolismo , Lisina/metabolismo , Engenharia de Proteínas , Humanos , Especificidade por Substrato
7.
Anal Bioanal Chem ; 405(4): 1361-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23138472

RESUMO

Histone acetyltransferases (HATs) catalyze the acetylation of specific lysine residues in histone and nonhistone proteins. Recent studies showed that acetylation is widely distributed among cellular proteins, suggestive of diverse functions of HATs in cellular pathways. Nevertheless, currently available assays for HAT activity study are still quite limited. Here, we evaluated a series of thiol-sensitive fluorogenic compounds for the detection of the enzymatic activities of different HAT proteins. Upon conjugation to the thiol group of HSCoA, these molecules gain enhanced quantum yields and strong fluorescence, permitting facile quantitation of HAT activities. We investigated and compared the assay performances of these fluorogenic compounds for their capability as HAT activity reporters, including kinetics of reaction with HSCoA, influence on HAT activity, and fluorescence amplification factors. Our data suggest that CPM and coumarin maleic acid ester are excellent HAT probes owing to their fast reaction kinetics and dramatic fluorescence enhancement during the HAT reaction. Further, the microtiter plate measurements show that this fluorescent approach is robust and well suited for adaption to high-throughput screening of small molecule inhibitors of HATs, highlighting the value of this assay strategy in new drug discovery.


Assuntos
Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , Histona Acetiltransferases/química , Humanos , Cinética , Compostos de Sulfidrila/análise
8.
Biochemistry ; 50(32): 7033-44, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21736313

RESUMO

Post-translational modifications (PTMs) are important strategies used by eukaryotic organisms to modulate their phenotypes. One of the well-studied PTMs, arginine methylation, is catalyzed by protein arginine methyltransferases (PRMTs) with SAM as the methyl donor. The functions of PRMTs have been broadly studied in different biological processes and diseased states, but the molecular basis for arginine methylation is not well-defined. In this study, we report the transient-state kinetic analysis of PRMT1 catalysis. The fast association and dissociation rates suggest that PRMT1 catalysis of histone H4 methylation follows a rapid equilibrium sequential kinetic mechanism. The data give direct evidence that the chemistry of methyl transfer is the major rate-limiting step and that binding of the cofactor SAM or SAH affects the association and dissociation of H4 with PRMT1. Importantly, from the stopped-flow fluorescence measurements, we have identified a critical kinetic step suggesting a precatalytic conformational transition induced by substrate binding. These results provide new insights into the mechanism of arginine methylation and the rational design of PRMT inhibitors.


Assuntos
Proteína-Arginina N-Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Biocatálise , Histonas/metabolismo , Cinética , Metilação , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/química , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
Cell Discov ; 7(1): 122, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34961760

RESUMO

Histone lysine crotonylation is a posttranslational modification with demonstrated functions in transcriptional regulation. Here we report the discovery of a new type of histone posttranslational modification, lysine methacrylation (Kmea), corresponding to a structural isomer of crotonyllysine. We validate the identity of this modification using diverse chemical approaches and further confirm the occurrence of this type of histone mark by pan specific and site-specific anti-methacryllysine antibodies. In total, we identify 27 Kmea modified histone sites in HeLa cells using affinity enrichment with a pan Kmea antibody and mass spectrometry. Subsequent biochemical studies show that histone Kmea is a dynamic mark, which is controlled by HAT1 as a methacryltransferase and SIRT2 as a de-methacrylase. Altogether, these investigations uncover a new type of enzyme-catalyzed histone modification and suggest that methacrylyl-CoA generating metabolism is part of a growing number of epigenome-associated metabolic pathways.

11.
Biochem Biophys Res Commun ; 379(2): 567-72, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19121292

RESUMO

Protein arginine methyltransferases (PRMTs) play important roles in both normal physiology and human diseases. Deregulation of PRMT activity has been linked to several pathological states such as cancer and cardiovascular disorders. Herein, we report our work of designing and using new fluorescent reporters to perform single-step analysis of substrate binding and methylation by PRMT1. Both fluorescence intensity and anisotropy of the two reporters, R4-FL and H4-FL, were shown to effectively manifest enzyme-substrate interactions, highlighting their application in investigating PRMT inhibitors. In particular, the methylation process of R4-FL can be directly studied using fluorescence intensity readout. By combining the fluorescent measurement with radioactive analysis, we determined that AMI-1 inhibits PRMT1 activity through the mechanism of blocking peptide substrate binding.


Assuntos
Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/química , Naftalenossulfonatos/farmacologia , Peptídeos/química , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Ureia/análogos & derivados , Sequência de Aminoácidos , Polarização de Fluorescência , Corantes Fluorescentes/síntese química , Humanos , Dados de Sequência Molecular , Peptídeos/síntese química , Proteína-Arginina N-Metiltransferases/química , Proteínas Repressoras/química , Ureia/farmacologia
12.
Bioconjug Chem ; 20(2): 360-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19146394

RESUMO

Histone acetyltransferases (HATs) are an important class of epigenetic enzymes involved in chromatin restructuring and transcriptional regulation. We describe in this paper a novel approach for the identification and characterization of HAT inhibitors using both fluorescence resonance energy transfer (FRET) and fluorescence polarization. Expressed protein ligation (EPL) was used to label HATs PCAF and p300 with Dabcyl (Dab) as FRET acceptors. Methoxycoumarin (Mca) is conjugated to HAT substrate analogues to function as fluorescent donors, namely, H3CoA20Mca for interacting with PCAF and LysCoAMca for p300. When a ligand-protein interaction occurs, the fluorescent intensity of the donor fluorophore decreases due to FRET quenching by the Dab acceptor. Meanwhile, the formation of ligand-protein complexes causes reduction of the molecular mobility of the donor fluorophore, resulting in increased fluorescence anisotropy. Thus, dual modes of fluorescence measurement, FRET and anisotropy, are integrated in the same assay system. In particular, we demonstrated that both FRET and anisotropy measurements can be used to effectively detect and characterize HAT inhibitors. The developed strategy should be useful in the search of new anticancer drugs that target the substrate interfaces of the HAT targets, as well as find values in mechanistic study of HATs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Fluorescência , Histona Acetiltransferases/antagonistas & inibidores , Sequência de Aminoácidos , Ligação Competitiva , Cumarínicos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Dados de Sequência Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo
13.
Bioorg Med Chem ; 17(3): 1381-6, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19114310

RESUMO

Esa1 (essential Sas2-related acetyltransferase 1) and Tip60 (HIV-1 TAT-interactive protein, 60 kDa) are key members of the MYST family of histone acetyltransferases (HATs) and play important functions in many cellular processes. In this work, we designed, synthesized and evaluated a series of substrate-based analogs for the inhibition of Esa1 and Tip60. The structures of these analogs feature that coenzyme A is covalently linked to the side chain amino group of the acetyl lysine residues in the histone peptide substrates. These bisubstrate analogs exhibit stronger potency in the inhibition of Esa1 and Tip60 compared to the small molecules curcumin and anacardic acid. In particular, H4K16CoA was tested as one of the most potent inhibitors for both Esa1 and Tip60. These substrate-based analog inhibitors will be useful mechanistic tools for analyzing biochemical mechanisms of Esa1 and Tip60, defining their functional roles in particular biological pathways, and facilitating protein crystallization and structural determination.


Assuntos
Inibidores Enzimáticos/química , Histona Acetiltransferases/antagonistas & inibidores , Peptídeos/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Sequência de Aminoácidos , Ácidos Anacárdicos/química , Coenzima A/química , Curcumina/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5 , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Especificidade por Substrato
14.
Elife ; 82019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31081496

RESUMO

Elucidating the conformational heterogeneity of proteins is essential for understanding protein function and developing exogenous ligands. With the rapid development of experimental and computational methods, it is of great interest to integrate these approaches to illuminate the conformational landscapes of target proteins. SETD8 is a protein lysine methyltransferase (PKMT), which functions in vivo via the methylation of histone and nonhistone targets. Utilizing covalent inhibitors and depleting native ligands to trap hidden conformational states, we obtained diverse X-ray structures of SETD8. These structures were used to seed distributed atomistic molecular dynamics simulations that generated a total of six milliseconds of trajectory data. Markov state models, built via an automated machine learning approach and corroborated experimentally, reveal how slow conformational motions and conformational states are relevant to catalysis. These findings provide molecular insight on enzymatic catalysis and allosteric mechanisms of a PKMT via its detailed conformational landscape.


Assuntos
Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Conformação Proteica
15.
Med Res Rev ; 28(5): 645-87, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18271058

RESUMO

Epigenetics is concerned about heritable changes in gene expression without alteration of the coding sequence. Epigenetic modification of chromatin includes methylation of genomic DNA as well as post-translational modification of chromatin-associated proteins, in particular, histones. The spectrum of histone and non-histone modifications ranges from the addition of relatively small groups such as methyl, acetyl and phosphoryl groups to the attachment of larger moieties such as poly(ADP-ribose) and small proteins ubiquitin or small ubiquitin-like modifier (SUMO). The combinatorial nature of DNA methylation and histone modifications constitutes a significant pathway of epigenetic regulation and considerably extends the information potential of the genetic code. Chromatin modification has emerged as a new fundamental mechanism for gene transcriptional activity control associated with many cellular processes like proliferation, growth, and differentiation. Also it is increasingly recognized that epigenetic modifications constitute important regulatory mechanisms for the pathogenesis of malignant transformations. We review here the recent progress in the development of chemical inhibitors/activators that target different chromatin modifying enzymes. Such potent natural or synthetic modulators can be utilized to establish the quantitative contributions of epigenetic modifications in DNA regulated pathways including transcription, replication, recombination and repair, as well as provide leads for developing new cancer therapeutics.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Histonas/metabolismo , Neoplasias/genética , Neoplasias/terapia , Animais , Cromatina/genética , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Metiltransferases/metabolismo , Neoplasias/metabolismo , Inibidores da Síntese de Ácido Nucleico/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Nucleosídeos/antagonistas & inibidores , Nucleosídeos/farmacologia
16.
Anal Biochem ; 380(1): 106-10, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18558077

RESUMO

Histone acetyltransferases (HATs) are important chromatin modifying enzymes that catalyze acetylation of specific lysine residues in histone and nonhistone substrates. They participate in multiple cellular processes such as transcriptional regulation and signal transduction. Aberrant expression of HATs has been observed in various disease states, especially cancer. However, current strategies used for studying HAT enzymatic activity and inhibitor discovery are quite limited. We report here a novel strategy for the homogeneous, continuous, one-step measurement of HAT activity. A series of fluorescent reporters based on the amino-terminal seqence of histone H4 were synthesized and evaluated for HAT assay. Fluorescence signals change effectively in response to the acetylation process by HAT p300. Such an assay should thus be broadly useful for assaying HAT activity in vitro as well as valuable in discovering new anticancer drugs based on the modulation of the HAT targets.


Assuntos
Corantes Fluorescentes/análise , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Bovinos , Compostos de Dansil/metabolismo , Fluoresceína/metabolismo , Corantes Fluorescentes/metabolismo , Histonas/química , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , Espectrometria de Fluorescência , Fatores de Tempo
17.
Medchemcomm ; 8(2): 440-444, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28649316

RESUMO

Protein arginine methyltransferase 1 (PRMT1) is a key player for the dynamic regulation of arginine methylation. Its dysregulation and aberrant expression are implicated in various pathological conditions, and a plethora of evidence suggests that PRMT1 inhibition is of significant therapeutic value. Herein, we reported the modification of a series of diamidine compounds with varied lengths in the middle alkyl linker for PRMT1 inhibition. Decamidine (2j), which possesses the longest linker in the series, displayed 2- and 4- fold increase in PRMT1 inhibition (IC50 = 13 µM), as compared with furamdine and stilbamidine. The inhibitory activity toward PRMT1 was validated by secondary orthogonal assays. Docking studies showed that the increased activity is due to the extra interaction of the amidine group with the SAM binding pocket, which is absent when the linker is not long enough. These results provide structural insights into developing the amidine type of PRMT1 inhibitors.

18.
SLAS Discov ; 22(1): 32-39, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581605

RESUMO

BCDIN3D is an RNA-methyltransferase that O-methylates the 5' phosphate of RNA and regulates microRNA maturation. To discover small-molecule inhibitors of BCDIN3D, a suite of biochemical assays was developed. A radiometric methyltransferase assay and fluorescence polarization-based S-adenosylmethionine and RNA displacement assays are described. In addition, differential scanning fluorimetry and surface plasmon resonance were used to characterize binding. These assays provide a comprehensive package for the development of small-molecule modulators of BCDIN3D activity.


Assuntos
Ensaios Enzimáticos/métodos , Metiltransferases/metabolismo , RNA/metabolismo , Sítios de Ligação , Estabilidade Enzimática , Polarização de Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Cinética , MicroRNAs/metabolismo , S-Adenosilmetionina , Ressonância de Plasmônio de Superfície , Temperatura
19.
Cancer Res ; 77(7): 1753-1762, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202522

RESUMO

Chromatin-based mechanisms offer therapeutic targets in acute myeloid leukemia (AML) that are of great current interest. In this study, we conducted an RNAi-based screen to identify druggable chromatin regulator-based targets in leukemias marked by oncogenic rearrangements of the MLL gene. In this manner, we discovered the H4K16 histone acetyltransferase (HAT) MOF to be important for leukemia cell growth. Conditional deletion of Mof in a mouse model of MLL-AF9-driven leukemogenesis reduced tumor burden and prolonged host survival. RNA sequencing showed an expected downregulation of genes within DNA damage repair pathways that are controlled by MOF, as correlated with a significant increase in yH2AX nuclear foci in Mof-deficient MLL-AF9 tumor cells. In parallel, Mof loss also impaired global H4K16 acetylation in the tumor cell genome. Rescue experiments with catalytically inactive mutants of MOF showed that its enzymatic activity was required to maintain cancer pathogenicity. In support of the role of MOF in sustaining H4K16 acetylation, a small-molecule inhibitor of the HAT component MYST blocked the growth of both murine and human MLL-AF9 leukemia cell lines. Furthermore, Mof inactivation suppressed leukemia development in an NUP98-HOXA9-driven AML model. Taken together, our results establish that the HAT activity of MOF is required to sustain MLL-AF9 leukemia and may be important for multiple AML subtypes. Blocking this activity is sufficient to stimulate DNA damage, offering a rationale to pursue MOF inhibitors as a targeted approach to treat MLL-rearranged leukemias. Cancer Res; 77(7); 1753-62. ©2017 AACR.


Assuntos
Histona Acetiltransferases/fisiologia , Leucemia/etiologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Animais , Linhagem Celular Tumoral , Dano ao DNA , Feminino , Histona Acetiltransferases/antagonistas & inibidores , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Proteínas Formadoras de Poros Nucleares/genética
20.
ChemMedChem ; 12(16): 1359-1368, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28346821

RESUMO

Human p300 is a polyhedric transcriptional coactivator that plays a crucial role in acetylating histones on specific lysine residues. A great deal of evidence shows that p300 is involved in several diseases, including leukemia, tumors, and viral infection. Its involvement in pleiotropic biological roles and connections to diseases provide the rationale to determine how its modulation could represent an amenable drug target. Several p300 inhibitors (i.e., histone acetyltransferase inhibitors, HATis) have been described so far, but they all suffer from low potency, lack of specificity, or low cell permeability, which thus highlights the need to find more effective inhibitors. Our cinnamoyl derivative, 2,6-bis(3-bromo-4-hydroxybenzylidene)cyclohexanone (RC56), was identified as an active and selective p300 inhibitor and was proven to be a good hit candidate to investigate the structure-activity relationship toward p300. Herein, we describe the design, synthesis, and biological evaluation of new HATis structurally related to our hit; moreover, we investigate the interactions between p300 and the best-emerged hits by means of induced-fit docking and molecular-dynamics simulations, which provided insight into the peculiar chemical features that influence their activity toward the targeted enzyme.


Assuntos
Cinamatos/química , Proteína p300 Associada a E1A/metabolismo , Inibidores Enzimáticos/química , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/química , Compostos de Benzilideno/metabolismo , Compostos de Benzilideno/farmacologia , Sítios de Ligação , Linhagem Celular , Cinamatos/metabolismo , Cinamatos/farmacologia , Cicloexanonas/química , Cicloexanonas/metabolismo , Cicloexanonas/farmacologia , Proteína p300 Associada a E1A/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA