Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37376356

RESUMO

Optimizing the use of magnetite-chitosan composites for heavy metal adsorption has been of great interest due to their environmental friendliness. To gain insights into their potential with green synthesis, this study analyzed one of these composites through X-ray diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy. Adsorption properties were then explored via static experiments to evaluate the pH dependence, isotherms, kinetics, thermodynamics and regeneration adsorption of Cu(II) and Cd(II). Results disclosed that the optimum pH of adsorption was 5.0, the equilibrium time was about 10 min, and the capacity for Cu(II) and Cd(II) reached 26.28 and 18.67 mg/g, respectively. The adsorption amount of cations increased with temperature from 25 °C to 35 °C and decreased with further increase in temperature from 40 °C to 50 °C, which might be related to the unfolding of chitosan; the adsorption capacity was above 80% of the initial value after two regenerations and about 60% after five regenerations. The composite has a relatively rough outer surface, but its inner surface and porosity are not obvious; it has functional groups of magnetite and chitosan, and chitosan might dominate the adsorption. Consequently, this research proposes the value of maintaining green synthesis research to further optimize the composite system of heavy metal adsorption.

2.
Sci Total Environ ; 873: 162329, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805068

RESUMO

A green approach of copper (Cu) contaminated pig manure composting by earthworm Eisenia fetida was optimized. This work aims to assess the relationship between the bio-fertility properties and bioaccumulation of Cu during vermicomposting with five different doses of Cu. The optimal concentration of copper largely promoted the enrichment of nitrogen, phosphorus, and potassium, but the biological activities of earthworms could be inhibited once the Cu concentration exceed the threshold. When the Cu doses at 300 mg kg-1, the nutrient recovery rate (Irecovery) of available nitrogen, phosphorus and potassium reached their highest value, concomitant with largest C/N ratio reduced at 46.01 %. Moreover, nutrients recovery mechanism of total phosphorus increased up to 0.11 % h-1 and higher bioaccumulations in faces and intestine were detected by 1.79 and 0.99, respectively, during vermicomposting. The maximal enzyme activity rates (kmax) indicate that the enzyme activities, such as ROS and SOD, are sensitive bioindicators, which can be used to estimate the stress response of earthworms and Cu biotoxicity. The maximum specific growth rate (µmax) of the actinomycetes (TAct) increased gradually from 0.02 to 0.04 with the increase of Cu doses, but total fungi (TF) showed different response to µmax, which decreased firstly and then increased. It was demonstrated that Cu influenced the gut microbial community to vary the bio-fertility properties and bioaccumulation of Cu in the pig manure. All the findings refer that the vermicomposting could be the sustainable agricultural practices.


Assuntos
Cobre , Oligoquetos , Suínos , Animais , Cobre/análise , Esterco/microbiologia , Agricultura , Oligoquetos/fisiologia , Nitrogênio , Fósforo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA