Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36198500

RESUMO

The Kv3.4 channel regulates action potential (AP) repolarization in nociceptors and excitatory synaptic transmission in the spinal cord. We hypothesize that this is a tunable role governed by protein kinase-C-dependent phosphorylation of the Kv3.4 cytoplasmic N-terminal inactivation domain (NTID) at four nonequivalent sites. However, there is a paucity of causation evidence linking the phosphorylation status of Kv3.4 to the properties of the AP. To establish this link, we used adeno-associated viral vectors to specifically manipulate the expression and the effective phosphorylation status of Kv3.4 in cultured dorsal root ganglion (DRG) neurons from mixed-sex rat embryos at embryonic day 18. These vectors encoded GFP (background control), wild-type (WT) Kv3.4, phosphonull (PN) Kv3.4 mutant (PN = S[8,9,15,21]A), phosphomimic (PM) Kv3.4 mutant (PM = S[8,9,15,21]D), and a Kv3.4 nonconducting dominant-negative (DN) pore mutant (DN = W429F). Following viral infection of the DRG neurons, we evaluated transduction efficiency and Kv3.4 expression and function via fluorescence microscopy and patch clamping. All functional Kv3.4 constructs induced current overexpression with similar voltage dependence of activation. However, whereas Kv3.4-WT and Kv3.4-PN induced fast transient currents, the Kv3.4-PM induced currents exhibiting impaired inactivation. In contrast, the Kv3.4-DN abolished the endogenous Kv3.4 current. Consequently, Kv3.4-DN and Kv3.4-PM produced APs with the longest and shortest durations, respectively, whereas Kv3.4-WT and Kv3.4-PN produced intermediate results. Moreover, the AP widths and maximum rates of AP repolarization from these groups are negatively correlated. We conclude that the expression and effective phosphorylation status of the Kv3.4 NTID confer a tunable mechanism of AP repolarization, which may provide exquisite regulation of pain signaling in DRG neurons.SIGNIFICANCE STATEMENTThe AP is an all-or-none millisecond-long electrical impulse that encodes information in the frequency and patterns of repetitive firing. However, signaling may also depend on the plasticity and diversity of the AP waveform. For instance, the shape and duration of the AP may regulate nociceptive synaptic transmission between a primary sensory afferent to a secondary neuron in the spinal cord. Here, we used mutants of the Kv3.4 voltage-gated potassium channel to manipulate its expression and effective phosphorylation status in dorsal root ganglion neurons and directly show how the expression and malleable inactivation properties of Kv3.4 govern the AP duration and repolarization rate. These results elucidate a mechanism of neural AP plasticity that may regulate pain signaling.

2.
FASEB J ; 35(1): e21241, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33368632

RESUMO

The voltage-gated potassium channel Kv3.4 is a crucial regulator of nociceptive signaling in the dorsal root ganglion (DRG) and the dorsal horn of the spinal cord. Moreover, Kv3.4 dysfunction has been linked to neuropathic pain. Although kinases and phosphatases can directly modulate Kv3.4 gating, the signaling mechanisms regulating the expression and stability of the Kv3.4 protein are generally unknown. We explored a potential role of PKCε and found an unexpected interaction that has a positive effect on Kv3.4 expression. Co-immunoprecipitation studies revealed a physical association between PKCε and Kv3.4 in both heterologous cells and rat DRG neurons. Furthermore, in contrast to the wild-type and constitutively active forms of PKCε, expression of a catalytically inactive form of the enzyme inhibits Kv3.4 expression and membrane localization through a dominant negative effect. Co-expression of Kv3.4 with the wild-type, constitutively active, or catalytically inactive forms of PKCε had no significant effects on Kv3.4 gating. These results suggest that a novel physical interaction of the Kv3.4 channel with functional PKCε primarily determines its stability and localization in DRG neurons. This interaction is akin to those of previously identified accessory ion channel proteins, which could be significant in neural tissues where Kv3.4 regulates electrical signaling.


Assuntos
Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Proteína Quinase C-épsilon/metabolismo , Canais de Potássio Shaw/biossíntese , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos , Proteína Quinase C-épsilon/genética , Ratos , Canais de Potássio Shaw/genética
3.
J Neurosci ; 35(45): 14983-99, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558771

RESUMO

The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson's disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson's disease and related disorders. SIGNIFICANCE STATEMENT: Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson's disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a Parkinson's disease model, the mice show normal motor behavior. They also show fewer abnormal motor behaviors (dyskinesias) in response to l-3,4-dihydroxyphenylalanine, the principal treatment for Parkinson's disease. The work thus suggests new avenues for the development of novel treatment strategies for Parkinson's disease and potentially other basal-ganglia-related disorders.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Ritmo Circadiano/fisiologia , Dopamina/biossíntese , Discinesia Induzida por Medicamentos/metabolismo , Transtornos das Habilidades Motoras/metabolismo , Transtornos Parkinsonianos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/prevenção & controle , Feminino , Levodopa/toxicidade , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transtornos das Habilidades Motoras/prevenção & controle , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/prevenção & controle
4.
Eur J Immunol ; 43(12): 3355-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037540

RESUMO

Mutations in PTEN-induced kinase 1 (PINK1), a serine/threonine kinase linked to familial early-onset Parkinsonism, compromise mitochondrial integrity and metabolism and impair AKT signaling. As the activation of a naïve T cell requires an AKT-dependent reorganization of a cell's metabolic machinery, we sought to determine if PINK1-deficient T cells lack the ability to undergo activation and differentiation. We show that CD4(+) T cells from PINK1 knockout mice fail to properly phosphorylate AKT upon activation, resulting in reduced expression of the IL-2 receptor subunit CD25. Following, deficient IL-2 signaling mutes the activation-induced increase in respiratory capacity and mitochondrial membrane potential. Under polarization conditions favoring the development of induced regulatory T cells, PINK1(-/-) T cells exhibit a reduced ability to suppress bystander T-cell proliferation despite normal FoxP3 expression kinetics. Our results describe a critical role for PINK1 in integrating extracellular signals with metabolic state during T-cell fate determination, and may have implications for the understanding of altered T-cell populations and immunity during the progression of active Parkinson's disease or other immunopathologies.


Assuntos
Diferenciação Celular/imunologia , Citosol/imunologia , Ativação Linfocitária , Mitocôndrias/imunologia , Proteínas Quinases/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , Interleucina-2/genética , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Linfócitos T Reguladores/patologia
5.
Nat Commun ; 15(1): 2533, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514618

RESUMO

Small-molecule modulators of diverse voltage-gated K+ (Kv) channels may help treat a wide range of neurological disorders. However, developing effective modulators requires understanding of their mechanism of action. We apply an orthogonal approach to elucidate the mechanism of action of an imidazolidinedione derivative (AUT5), a highly selective positive allosteric modulator of Kv3.1 and Kv3.2 channels. AUT5 modulation involves positive cooperativity and preferential stabilization of the open state. The cryo-EM structure of the Kv3.1/AUT5 complex at a resolution of 2.5 Å reveals four equivalent AUT5 binding sites at the extracellular inter-subunit interface between the voltage-sensing and pore domains of the channel's tetrameric assembly. Furthermore, we show that the unique extracellular turret regions of Kv3.1 and Kv3.2 essentially govern the selective positive modulation by AUT5. High-resolution apo and bound structures of Kv3.1 demonstrate how AUT5 binding promotes turret rearrangements and interactions with the voltage-sensing domain to favor the open conformation.


Assuntos
Canais de Potássio Shaw , Sítios de Ligação , Canais de Potássio Shaw/metabolismo
6.
Neurodegener Dis ; 12(3): 136-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23295771

RESUMO

BACKGROUND: Mutations in PTEN-induced kinase 1 (PINK1) cause early-onset recessive parkinsonism. PINK1 and Parkin regulate mitochondrial quality control. However, PINK1 ablation in Drosophila and cultured mammalian cell lines affected mitochondrial function/dynamics in opposite ways, confounding the elucidation of the role of PINK1 in these processes. OBJECTIVE: We recently generated PINK1-deficient (PINK1-/-) mice and reasoned that primary cells from these mice provide a more physiological substrate to study the role of PINK1 in mammals and to investigate metabolic adaptations and neuron-specific vulnerability in PINK1 deficiency. METHODS AND RESULTS: Using real-time measurement of oxygen consumption and extracellular acidification, we show that basal mitochondrial respiration is increased, while maximum respiration and spare respiratory capacity are decreased in PINK1-/- mouse embryonic fibroblasts (MEF), as is the membrane potential. In addition, a Warburg-like effect in PINK1-/- MEF promotes survival that is abrogated by inhibition of glycolysis. Expression of uncoupling protein-2 is decreased in PINK1-/- MEF and the striatum of PINK1-/- mice, possibly increasing the sensitivity to oxidative stress. Mitochondria accumulate in large foci in PINK1-/- MEF, indicative of abnormal mitochondrial dynamics and/or transport. Like in PINK1-/- Drosophila, enlarged/swollen mitochondria accumulate in three different cell types from PINK1-/- mice (MEF, primary cortical neurons and embryonic stem cells). However, mitochondrial enlargement is greatest and most prominent in primary cortical neurons that also develop cristae fragmentation and disintegration. CONCLUSION: Our results reveal mechanisms of PINK1-related parkinsonism, show that the function of PINK1 is conserved between Drosophila and mammals when studied in primary cells, and demonstrate that the same PINK1 mutation can affect mitochondrial morphology/degeneration in a cell type-specific manner, suggesting that tissue-/cell-specific metabolic capacity and adaptations determine phenotypes and cellular vulnerability in PINK1-/- mice and cells.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Proteínas Quinases/genética , Adaptação Fisiológica , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Cultura Primária de Células
7.
JSLS ; 27(4)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045817

RESUMO

Background and Objectives: Minimally invasive approaches to benign hysterectomy are the current standard of care when feasible. Use of robotic-assisted laparoscopic hysterectomy (RA-LH) has been increasing; however, direct comparative data that accounts for uterine weight in conventional laparoscopic hysterectomy (CLH) and RA-LH is limited. We sought to examine the impact of uterine weight on immediate perioperative morbidity in CLH versus RA-LH. The primary outcome was a composite of complications including visceral injuries, conversions to abdominal procedures, and transfusions. Methods: A retrospective cohort study of patients who underwent a minimally invasive laparoscopic hysterectomy (CLH and RA-LH) in a single hospital system between January 1, 2014 and December 31, 2017 as identified by Current Procedural Terminology codes. The primary exposure was CLH or RA-LH. Uterine weight was categorized into four groups: <150 g, 150 to < 250 g, 250 to < 450 g, and ≥ 450 g. Results: A total of 1506 patients were included; 539 underwent CLH and 967 underwent RA-LH. Median uterine weight was higher in patients who underwent CLH (161.0 g) compared to RA-LH (147.0 g), P = .001. The odds of the composite of complications in CLH was 4.43 (2.84 - 6.92) higher than the odds of the composite in RA-LH. When stratified by the uterine weight, the odds of complications was significantly higher in CLH in the following categories: <150 g, 250 to < 450 g, and ≥ 450 g (OR: 4.41, 3.28, and 7.81, respectively). Conclusion: Surgical morbidity was lower in RA-LH across the spectrum of uterine weights compared to CLH. Patients may particularly benefit from RA-LH at higher uterine weights.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Feminino , Humanos , Estudos Retrospectivos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Laparoscopia/métodos , Histerectomia/métodos
8.
Neurobiol Dis ; 45(1): 469-78, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21945539

RESUMO

Mutations in the PARK6 gene coding for PTEN-induced kinase 1 (PINK1) cause recessive early-onset Parkinsonism. Although PINK1 and Parkin promote the degradation of depolarized mitochondria in cultured cells, little is known about changes in signaling pathways that may additionally contribute to dopamine neuron loss in recessive Parkinsonism. Accumulating evidence implicates impaired Akt cell survival signaling in sporadic and familial PD (PD). IGF-1/Akt signaling inhibits dopamine neuron loss in several animal models of PD and both IGF-1 and insulin are neuroprotective in various settings. Here, we tested whether PINK1 is required for insulin-like growth factor 1 (IGF-1) and insulin dependent phosphorylation of Akt and the regulation of downstream Akt target proteins. Our results show that embryonic fibroblasts from PINK1-deficient mice display significantly reduced Akt phosphorylation in response to both IGF-1 and insulin. Moreover, phosphorylation of glycogen synthase kinase-3ß (GSK-3ß) and nuclear exclusion of FoxO1 are decreased in IGF-1 treated PINK1-deficient cells. In addition, phosphorylation of ribosomal protein S6 is reduced indicating decreased activity of mitochondrial target of rapamycin (mTOR) in IGF-1 treated PINK1(-/-) cells. Importantly, the protection afforded by IGF-1 against staurosporine-induced metabolic dysfunction and apoptosis is abrogated in PINK1-deficient cells. Moreover, IGF-1-induced Akt phosphorylation is impaired in primary cortical neurons from PINK1-deficient mice. Inhibition of cellular Ser/Thr phosphatases did not increase the amount of phosphorylated Akt in PINK1(-/-) cells, suggesting that components upstream of Akt phosphorylation are compromised in PINK1-deficient cells. Our studies show that PINK1 is required for optimal IGF-1 and insulin dependent Akt signal transduction, and raise the possibility that impaired IGF-1/Akt signaling is involved in PINK1-related Parkinsonism by increasing the vulnerability of dopaminergic neurons to stress-induced cell death.


Assuntos
Apoptose/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Insulina/metabolismo , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/fisiologia , Proteínas Quinases/genética , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
9.
J Vis Exp ; (184)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35758711

RESUMO

Mitochondria play an important role in cellular ATP production, reactive oxygen species regulation, and Ca2+ concentration control. Mitochondrial dysfunction has been implicated in the pathogenesis of multiple neurodegenerative diseases, including Parkinson's disease (PD), Huntington's disease, and Alzheimer's disease. To study the role of mitochondria in models of these diseases, we can measure mitochondrial respiration via oxygen consumption rate (OCR) as a proxy for mitochondrial function. OCR has already been successfully measured in cell cultures, as well as isolated mitochondria. However, these techniques are less physiologically relevant than measuring OCR in acute brain slices. To overcome this limitation, the authors developed a new method using a Seahorse XF analyzer to directly measure the OCR in acute striatal slices from adult mice. The technique is optimized with a focus on the striatum, a brain area involved in PD and Huntington's disease. The analyzer performs a live cell assay using a 24-well plate, which allows the simultaneous kinetic measurement of 24 samples. The method uses circular-punched pieces of striatal brain slices as samples. We demonstrate the effectiveness of this technique by identifying a lower basal OCR in striatal slices of a mouse model of PD. This method will be of broad interest to researchers working in the field of PD and Huntington's disease.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Camundongos , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo
10.
Int Orthop ; 35(12): 1889-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21487672

RESUMO

PURPOSE: The purpose of this study was to investigate the effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) with or without osteogenic differentiation medium (ODM) on osteogenic differentiation of primary human bone-marrow-derived mesenchymal stem cells (hBMSCs) in vitro. METHOD: The hBMSCs were isolated from medullary reaming tissue. At 80% confluence, hBMSCs were treated with different concentrations of rhBMP-7 with and without ODM. Alkaline phosphatase (ALP) activity, calcium deposition and messenger RNA (mRNA) expression of osteocalcin (OC) and osteopontin (OPN) were examined. RESULTS: ALP activity and calcium deposits in hBMSC culture were significantly increased by rhBMP-7 at 0.1 µg/ml (0.23 ± 0.07 IU and 28.9 ± 4.2 mg/dl) and 1.0 µg/ml (0.32 ± 0.03 IU and 38.7 ± 3.0 mg/dl), respectively, in the presence of ODM, showing a clearly dose-dependent osteoblastic differentiation. However, the same dose of 0.1 µg/ml rhBMP-7 without ODM and ODM alone induced low level of ALP and calcium deposits, indicating a synergistic effect of rhBMP-7 and ODM on committed osteogenic differentiation. Quantitative real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed up-regulated OC and OPN mRNA levels, corroborating the synergistic effect of rhBMP-7 and ODM. CONCLUSION: Our study showed that rhBMP-7 with ODM created a synergistic effect on up-regulation of osteogenic genes as well as osteogenic differentiation of primary hBMSCs in vitro. In the presence of ODM, the lowest concentration of rhBMP-7 needed to induce significant osteogenic differentiation of hBMSCs was 0.1 µg/ml.


Assuntos
Proteína Morfogenética Óssea 7/farmacologia , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Osteopontina/genética , Osteopontina/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes , Regulação para Cima/efeitos dos fármacos
12.
Brain Res ; 1702: 96-104, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29894679

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene account for most common causes of familial and sporadic Parkinson's disease (PD) and are one of the strongest genetic risk factors in sporadic PD. Pathways implicated in LRRK2-dependent neurodegeneration include cytoskeletal dynamics, vesicular trafficking, autophagy, mitochondria, and calcium homeostasis. However, the exact molecular mechanisms still need to be elucidated. Both genetic and environmental causes of PD have highlighted the importance of mitochondrial dysfunction in the pathogenesis of PD. Mitochondrial impairment has been observed in fibroblasts and iPSC-derived neural cells from PD patients with LRRK2 mutations, and LRRK2 has been shown to localize to mitochondria and to regulate its function. In this review we discuss recent discoveries relating to LRRK2 mutations and mitochondrial dysfunction.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mitocôndrias/metabolismo , Autofagia , Cálcio/metabolismo , Citoesqueleto , Neurônios Dopaminérgicos/metabolismo , Homeostase , Humanos , Mitocôndrias/genética , Mutação , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico
13.
Neurobiol Aging ; 75: 1-10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30504091

RESUMO

Mutations and deletions in PTEN-induced kinase 1 (PINK1) cause autosomal recessive Parkinson's disease (PD), the second most common neurodegenerative disorder. PINK1 is a nuclear-genome encoded Ser/Thr kinase in mitochondria. PINK1 deletion was reported to affect dopamine (DA) levels in the striatum and mitochondrial functions but with conflicting results. The role of PINK1 in mitochondrial function and in PD pathogenesis remains to be elucidated thoroughly. In this study, we measured DA release using fast-scan cyclic voltammetry in acute striatal slices from both PINK1 knockout (KO) and wild-type (WT) mice at different ages. We found that single pulse-evoked DA release in the dorsal striatum of PINK1 KO mice was decreased in an age-dependent manner. Furthermore, the decrease was because of less DA release instead of an alteration of DA transporter function or DA terminal degeneration. We also found that PINK1 KO striatal slices had significantly lower basal mitochondria respiration compared with that of WT controls, and this impairment was also age-dependent. These results suggest that the impaired DA release is most likely because of mitochondrial dysfunction and lower ATP production.


Assuntos
Fatores Etários , Corpo Estriado/metabolismo , Dopamina/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases/genética , Trifosfato de Adenosina/metabolismo , Animais , Dopamina/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Doença de Parkinson/genética
14.
Behav Brain Res ; 363: 161-172, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30735759

RESUMO

Parkinson's disease (PD) is characterized by motor impairments and several non-motor features, including frequent depression and anxiety. Stress-induced deficits of adult hippocampal neurogenesis (AHN) have been linked with abnormal affective behavior in animals. It has been speculated that AHN defects may contribute to affective symptoms in PD, but this hypothesis remains insufficiently tested in animal models. Mice that lack the PD-linked kinase PINK1 show impaired differentiation of adult-born neurons in the hippocampus. Here, we examined the relationship between AHN deficits and affective behavior in PINK1-/- mice under basal (no stress) conditions and after exposure to chronic stress. PINK1 loss and corticosterone negatively and jointly affected AHN, leading to lower numbers of neural stem cells and newborn neurons in the dentate gyrus of corticosterone-treated PINK1-/- mice. Despite increased basal AHN deficits, PINK1-deficient mice showed normal affective behavior. However, lack of PINK1 sensitized mice to corticosterone-induced behavioral despair in the tail suspension test at a dose where wildtype mice were unaffected. Moreover, after two weeks of chronic restraint stress male PINK1-/- mice displayed increased immobility in the forced swim test, and protein expression of the glucocorticoid receptor in the hippocampus was reduced. Thus, while impaired AHN as such is insufficient to cause affective dysfunction in this PD model, PINK1 deficiency may lower the threshold for chronic stress-induced depression in PD. Finally, PINK1-deficient mice displayed reduced basal voluntary wheel running but normal rotarod performance, a finding whose mechanisms remain to be determined.


Assuntos
Depressão/fisiopatologia , Neurogênese/fisiologia , Proteínas Quinases/fisiologia , Animais , Ansiedade/fisiopatologia , Transtornos de Ansiedade/fisiopatologia , Comportamento Animal , Diferenciação Celular , Proliferação de Células , Corticosterona/metabolismo , Giro Denteado/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/fisiologia , Sistema Hipotálamo-Hipofisário , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Neurônios/metabolismo , Doença de Parkinson/fisiopatologia , Sistema Hipófise-Suprarrenal , Proteínas Quinases/genética , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Natação , Lobo Temporal/fisiopatologia
15.
Cell Res ; 29(4): 313-329, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858560

RESUMO

Missense mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) cause the majority of familial and some sporadic forms of Parkinson's disease (PD). The hyperactivity of LRRK2 kinase induced by the pathogenic mutations underlies neurotoxicity, promoting the development of LRRK2 kinase inhibitors as therapeutics. Many potent and specific small-molecule LRRK2 inhibitors have been reported with promise. However, nearly all inhibitors are ATP competitive-some with unwanted side effects and unclear clinical outcome-alternative types of LRRK2 inhibitors are lacking. Herein we identify 5'-deoxyadenosylcobalamin (AdoCbl), a physiological form of the essential micronutrient vitamin B12 as a mixed-type allosteric inhibitor of LRRK2 kinase activity. Multiple assays show that AdoCbl directly binds LRRK2, leading to the alterations of protein conformation and ATP binding in LRRK2. STD-NMR analysis of a LRRK2 homologous kinase reveals the contact sites in AdoCbl that interface with the kinase domain. Furthermore, we provide evidence that AdoCbl modulates LRRK2 activity through disrupting LRRK2 dimerization. Treatment with AdoCbl inhibits LRRK2 kinase activity in cultured cells and brain tissue, and prevents neurotoxicity in cultured primary rodent neurons as well as in transgenic C. elegans and D. melanogaster expressing LRRK2 disease variants. Finally, AdoCbl alleviates deficits in dopamine release sustainability caused by LRRK2 disease variants in mouse models. Our study uncovers vitamin B12 as a novel class of LRRK2 kinase modulator with a distinct mechanism, which can be harnessed to develop new LRRK2-based PD therapeutics in the future.


Assuntos
Cobamidas/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Vitamina B 12/análogos & derivados , Complexo Vitamínico B/farmacologia , Regulação Alostérica , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Drosophila melanogaster , Reposicionamento de Medicamentos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos
16.
Cancer Epidemiol Biomarkers Prev ; 17(9): 2514-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18768525

RESUMO

Previous studies have suggested that the functional polymorphisms in the promoters of matrix metalloproteinases (MMP) genes were associated with the risk of cancers, but no study has ever explored these polymorphisms as risk factors for hepatocellular carcinoma. Recently, we firstly examined whether seven functional polymorphisms in the promoters of MMP-1, MMP-2, MMP-3, MMP-9, MMP-12, and MMP-13 have any bearing on the risk of hepatocellular carcinoma, but we found none. In this study, we focused on an additional six MMP polymorphisms, including four functional polymorphisms in the promoters of MMP-7 (A-181G and C-153T) and MMP-8 (C-799T and A-381G), and two nonsynonymous polymorphisms in MMP-10 (A180G) and MMP-21 (C572T). With the polymorphism validation, we found that only MMP-7 A-181G, MMP-8 C-799T, and MMP-21 C572T were polymorphic. These three polymorphisms were then genotyped in 434 patients with hepatocellular carcinoma and 480 controls by PRC-RFLP analysis. The associations between the polymorphisms and hepatocellular carcinoma risk were evaluated while controlling for confounding factors. No significant association with the risk of hepatocellular carcinoma was observed with the three polymorphisms in the overall sample, hepatitis B virus carriers, and non-hepatitis B virus carriers after correction for multiple comparisons. Furthermore, when the analyses were stratified by age, sex, status of smoking and drinking, pack-years of smoking, and family history of hepatocellular carcinoma, there was also no significant association between these polymorphisms and hepatocellular carcinoma risk. Our findings suggest that the polymorphisms MMP-7 A-181G, MMP-8 C-799T, and MMP-21 C572T may not play a major role in mediating susceptibility to hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 8 da Matriz/genética , Metaloproteinases da Matriz Secretadas/genética , Alelos , Carcinoma Hepatocelular/epidemiologia , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , China/epidemiologia , Predisposição Genética para Doença , Humanos , Incidência , Neoplasias Hepáticas/epidemiologia , Modelos Logísticos , Reação em Cadeia da Polimerase , Polimorfismo Genético , Regiões Promotoras Genéticas , Fatores de Risco
17.
Cancer Epidemiol Biomarkers Prev ; 17(12): 3621-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19064581

RESUMO

Estrogens have been proposed to act as tumor promoters and induce hepatocarcinogenesis. Recently, we observed a significant association between the risk for hepatocellular carcinoma and the polymorphisms of the estrogen receptor (ESR) alpha (ESR1) gene, supporting the hypothesis of involvement for the estrogen-ESR axis in the estrogen-induced hepatocarcinogenesis. In this study, based on another hypothesis in which estrogen metabolites can directly cause DNA damage and affect tumor initiation, we examined whether the polymorphisms of the estrogen-metabolizing enzymes (EME), which are involved in biogenesis (CYP17, CYP19), bioavailability (CYP1A1, CYP1B1), and degradation (catechol-O-methyltransferase) of the estrogens, have any bearing on the risk for hepatocellular carcinoma. Seven functional polymorphisms in five EMEs (CYP17 MspAI site, CYP19 Trp39Arg, Ile462Val and MspI site in CYP1A1, CYP1B1 Val432Leu, and Ala72Ser and Val158Met in catechol-O-methyltransferase) were genotyped in 434 patients with hepatocellular carcinoma and 480 controls by PCR-RFLP analysis. The associations between the polymorphisms and hepatocellular carcinoma risk were evaluated while controlling for confounding factors. No significant association with the risk for hepatocellular carcinoma was observed with the seven polymorphisms in hepatitis B virus carriers and non-hepatitis B virus carriers after correction for multiple comparisons. After stratification by common confounding factors of hepatocellular carcinoma, the EME polymorphism remained no significant association with the hepatocellular carcinoma risk. Furthermore, no signs of gene-gene interactions were observed for each combination of the seven polymorphisms. Our findings suggest that the polymorphisms of EMEs may not contribute significantly to the risk for hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/genética , Estrogênios/metabolismo , Neoplasias Hepáticas/genética , Polimorfismo Genético , Aromatase/genética , Hidrocarboneto de Aril Hidroxilases/genética , Carcinoma Hepatocelular/enzimologia , Estudos de Casos e Controles , Catecol O-Metiltransferase/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1 , Feminino , Genótipo , Haplótipos , Humanos , Neoplasias Hepáticas/enzimologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Risco , Esteroide 17-alfa-Hidroxilase/genética
18.
Clin Cancer Res ; 13(9): 2627-33, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17473193

RESUMO

PURPOSE: Mouse double minute 2 (MDM2) is a key negative regulator of the p53 activity. Recently, a polymorphism in the MDM2 intronic promoter, SNP309, was shown to influence MDM2 expression and p53 activity. We examined whether the SNP309 was related to the risk of developing nasopharyngeal carcinoma (NPC) among Chinese populations. EXPERIMENTAL DESIGN: We genotyped the SNP309 in two independent case-control populations in southern China, one is from Guangxi province (including 593 NPC patients and 480 controls) and the other is from Guangdong province (including 239 patients and 286 controls), by PCR direct sequencing. Multivariate logistic regression analysis was used to calculate adjusted odds ratio (OR) and 95% confidence interval (95% CI). RESULTS: We observed that compared with the TT genotype, the genotypes containing G allele (GT + GG genotype) were associated with significant increased susceptibility to NPC in both Guangxi (OR, 1.43; 95% CI, 1.04-1.91) and Guangdong population (OR, 1.53; 95% CI, 1.00-2.36). When these two sample sets were combined, the OR of the GT + GG genotype developing NPC was 1.45 (95% CI, 1.12-1.85) compared with the TT genotype. Furthermore, compared with the TT genotype, the GT + GG genotype was also significantly associated with the advanced lymph node metastasis (OR, 1.84; 95% CI, 1.09-3.05). CONCLUSIONS: Our findings suggest that the MDM2 SNP309 may be a risk factor for the occurrence and advanced neck lymph node metastasis of NPC in Chinese population.


Assuntos
Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-mdm2/genética , Adulto , Povo Asiático/genética , China , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Regiões Promotoras Genéticas/genética , Risco
19.
Methods Enzymol ; 602: 339-368, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29588038

RESUMO

Voltage-gated ion channels (VGICs) of excitable tissues are emerging as targets likely involved in both the therapeutic and toxic effects of inhaled and intravenous general anesthetics. Whereas sevoflurane and propofol inhibit voltage-gated Na+ channels (Navs), sevoflurane potentiates certain voltage-gated K+ channels (Kvs). The combination of these effects would dampen neural excitability and, therefore, might contribute to the clinical endpoints of general anesthesia. As the body of work regarding the interaction of general anesthetics with VGICs continues to grow, a multidisciplinary approach involving functional, biochemical, structural, and computational techniques, many of which are detailed in other chapters, has increasingly become necessary to solve the molecular mechanism of general anesthetic action on VGICs. Here, we focus on electrophysiological and modeling approaches and methodologies to describe how our work has elucidated the biophysical basis of the inhibition Navs by propofol and the potentiation of Kvs by sevoflurane.


Assuntos
Anestésicos Gerais/farmacologia , Eletrofisiologia/métodos , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Simulação por Computador , Eletrodos , Eletrofisiologia/instrumentação , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Oócitos , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/agonistas , Propofol/farmacologia , Proteínas Recombinantes/metabolismo , Sevoflurano/farmacologia , Transfecção/instrumentação , Transfecção/métodos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Xenopus laevis
20.
Mol Neurobiol ; 55(2): 1692-1702, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28204960

RESUMO

Inhalational general anesthetics, such as sevoflurane and isoflurane, modulate a subset of brain Kv1 potassium channels. However, the Kv1.2 channel is resistant to propofol, a commonly used intravenous alkylphenol anesthetic. We hypothesize that propofol binds to a presumed pocket involving the channel's S4-S5 linker, but functional transduction is poor and, therefore, propofol efficacy is low. To test this hypothesis, we used a photoactive propofol analog (meta-aziPropofol = AziPm) to directly probe binding and electrophysiological and mutational analyses in Xenopus oocytes to probe function. We find that AziPm photolabels L321 in the S4-S5 linker of both the wild-type Kv1.2 and a mutant Kv1.2 (G329 T) with a novel gating phenotype. Furthermore, whereas propofol does not significantly modulate Kv1.2 WT but robustly potentiates Kv1.2 G329T, AziPm inhibits Kv1.2 WT and also potentiates Kv1.2 G329T. Kv1.2 modulation by AziPm was abolished by two mutations that decreased hydrophobicity at L321 (L321A and L321F), confirming the specific significance of the S4-S5 linker in the mechanism of general anesthetic modulation. Since AziPm binds to Kv1.2 G329T and shares the propofol ability to potentiate this mutant, the parent propofol likely also binds to the Kv1.2 channel. However, binding and alkylphenol-induced transduction are seemingly sensitive to the conformation of the S4-S5 linker site (altered by G329T) and subtle differences in the chemical structures of propofol and AziPm. Overall, the results are consistent with a mechanism of general anesthetic modulation that depends on the complementarity of necessary ligand binding and permissive ion channel conformations that dictate modulation and efficacy.


Assuntos
Anestésicos Inalatórios/farmacologia , Canal de Potássio Kv1.2/metabolismo , Oócitos/efeitos dos fármacos , Propofol/farmacologia , Animais , Sítios de Ligação , Oócitos/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA