Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7907): 771-778, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418677

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) constitute an evolutionarily ancient family of receptors that often undergo autoproteolysis to produce α and ß subunits1-3. A tethered agonism mediated by the 'Stachel sequence' of the ß subunit has been proposed to have central roles in aGPCR activation4-6. Here we present three cryo-electron microscopy structures of aGPCRs coupled to the Gs heterotrimer. Two of these aGPCRs are activated by tethered Stachel sequences-the ADGRG2-ß-Gs complex and the ADGRG4-ß-Gs complex (in which ß indicates the ß subunit of the aGPCR)-and the other is the full-length ADGRG2 in complex with the exogenous ADGRG2 Stachel-sequence-derived peptide agonist IP15 (ADGRG2(FL)-IP15-Gs). The Stachel sequences of both ADGRG2-ß and ADGRG4-ß assume a U shape and insert deeply into the seven-transmembrane bundles. Constituting the FXφφφXφ motif (in which φ represents a hydrophobic residue), five residues of ADGRG2-ß or ADGRG4-ß extend like fingers to mediate binding to the seven-transmembrane domain and activation of the receptor. The structure of the ADGRG2(FL)-IP15-Gs complex reveals the structural basis for the improved binding affinity of IP15 compared with VPM-p15 and indicates that rational design of peptidic agonists could be achieved by exploiting aGPCR-ß structures. By converting the 'finger residues' to acidic residues, we develop a method to generate peptidic antagonists towards several aGPCRs. Collectively, our study provides structural and biochemical insights into the tethered activation mechanism of aGPCRs.


Assuntos
Peptídeos , Receptores Acoplados a Proteínas G , Microscopia Crioeletrônica , Humanos , Peptídeos/metabolismo , Domínios Proteicos , Receptores Acoplados a Proteínas G/metabolismo
2.
Blood ; 143(19): 1965-1979, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271660

RESUMO

ABSTRACT: Acute myeloid leukemia (AML) is an aggressive hematological malignancy originating from transformed hematopoietic stem or progenitor cells. AML prognosis remains poor owing to resistance and relapse driven by leukemia stem cells (LSCs). Targeting molecules essential for LSC function is a promising therapeutic approach. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is often dysregulated in AML. We found that although PI3Kγ is highly enriched in LSCs and critical for self-renewal, it was dispensable for normal hematopoietic stem cells. Mechanistically, PI3Kγ-AKT signaling promotes nuclear factor erythroid 2-related factor 2 (NRF2) nuclear accumulation, which induces 6-phosphogluconate dehydrogenase (PGD) and the pentose phosphate pathway, thereby maintaining LSC stemness. Importantly, genetic or pharmacological inhibition of PI3Kγ impaired expansion and stemness of murine and human AML cells in vitro and in vivo. Together, our findings reveal a key role for PI3Kγ in selectively maintaining LSC function by regulating AKT-NRF2-PGD metabolic pathway. Targeting the PI3Kγ pathway may, therefore, eliminate LSCs without damaging normal hematopoiesis, providing a promising therapeutic strategy for AML.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Via de Pentose Fosfato , Animais , Humanos , Camundongos , Autorrenovação Celular , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Via de Pentose Fosfato/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
3.
Small ; : e2310416, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660815

RESUMO

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.

4.
J Transl Med ; 22(1): 94, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263182

RESUMO

BACKGROUND: Allergic diseases (ADs) such as asthma are presumed risk factors for COVID-19 infection. However, recent observational studies suggest that the assumed correlation contradicts each other. We therefore systematically investigated the genetic causal correlations between various ADs and COVID-19 infection/severity. METHODS: We performed a two-sample, bidirectional Mendelian randomization (MR) study for five types of ADs and the latest round of COVID-19 GWAS meta-analysis datasets (critically ill, hospitalized, and infection cases). We also further validated the significant causal correlations and elucidated the potential underlying molecular mechanisms. RESULTS: With the most suitable MR method, asthma consistently demonstrated causal protective effects on critically ill and hospitalized COVID-19 cases (OR < 0.93, p < 2.01 × 10-2), which were further confirmed by another validated GWAS dataset (OR < 0.92, p < 4.22 × 10-3). In addition, our MR analyses also observed significant causal correlations of food allergies such as shrimp allergy with the risk of COVID-19 infection/severity. However, we did not find any significant causal effect of COVID-19 phenotypes on the risk of ADs. Regarding the underlying molecular mechanisms, not only multiple immune-related cells such as CD4+ T, CD8+ T and the ratio of CD4+/CD8+ T cells showed significant causal effects on COVID-19 phenotypes and various ADs, the hematology traits including monocytes were also significantly correlated with them. Conversely, various ADs such as asthma and shrimp allergy may be causally correlated with COVID-19 infection/severity by affecting multiple hematological traits and immune-related cells. CONCLUSIONS: Our systematic and bidirectional MR analyses suggest a unidirectional causal effect of various ADs, particularly of asthma on COVID-19 infection/severity, but the reverse is not true. The potential underlying molecular mechanisms of the causal effects call for more attention to clinical monitoring of hematological cells/traits and may be beneficial in developing effective therapeutic strategies for allergic patients following infection with COVID-19.


Assuntos
Asma , COVID-19 , Hipersensibilidade , Humanos , Linfócitos T CD8-Positivos , Estado Terminal
5.
Biochem Biophys Res Commun ; 671: 327-334, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37327704

RESUMO

The serotonin receptor 5-HT6R is an important G-protein-coupled receptor (GPCR) that involved in essential functions within the central and peripheral nervous systems and is linked to various psychiatric disorders. Selective activation of 5-HT6R promotes neural stem cell regeneration activity. As a 5-HT6R selective agonist, 2-(5 chloro-2-methyl-1H-indol-3-yl)-N, N-dimethylethanolamine (ST1936) has been widely used to investigate the functions of the 5-HT6R. The molecular mechanism of how ST1936 is recognized by 5-HT6R and how it effectively couples with Gs remain unclear. Here, we reconstituted the ST1936-5-HT6R-Gs complex in vitro and solved its cryo-electron microscopy structure at 3.1 Å resolution. Further structural analysis and mutational studies facilitated us to identify the residues of the Y3107.43 and "toggle switch" W2816.48 of the 5-HT6R contributed to the higher efficacy of ST1936 compared with 5-HT. By uncovering the structural foundation of how 5-HT6R specifically recognizes agonists and elucidating the molecular process of G protein activation, our discoveries offer valuable insights and pave the way for the development of promising 5-HT6R agonists.


Assuntos
Receptores de Serotonina , Serotonina , Humanos , Microscopia Crioeletrônica , Receptores de Serotonina/metabolismo , Indóis
6.
Fish Shellfish Immunol ; 135: 108643, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871630

RESUMO

Rainbow trout (Oncorhynchus mykiss), an important economic cold-water fish worldwide, is severely threatened by viruses and bacteria in the farming industry. The vibriosis outbreak has caused a significant setback to aquaculture. Vibrio anguillarum, one of the common disease-causing vibriosis associated with severe lethal vibriosis in aquaculture, infects fish mainly by adsorption and invasion of the skin, gills, lateral line and intestine. To investigate the defense mechanism of rainbow trout against the pathogen after infection with Vibrio anguillarum, trout were intraperitoneally injected by Vibrio anguillarum and divided into symptomatic group (SG) and asymptomatic group (AG) according to the phenotype. RNA-Seq technology was used to evaluate the transcriptional signatures of liver, gill and intestine of trout injected with Vibrio anguillarum (SG and AG) and corresponding control groups (CG(A) and CG(B)). The GO and KEGG enrichment analyses were used to investigate the mechanisms underlying the differences in susceptibility to Vibrio anguillarum. Results showed that in SG, immunomodulatory genes in the cytokine network were activated and tissue function-related genes were down-regulated, while apoptosis mechanisms were activated. However, AG responded to Vibrio anguillarum infection by activating complement related immune defenses, while metabolism and function related genes were up-regulated. Conclusively, a rapid and effective immune and inflammatory response can successfully defend Vibrio anguillarum infection. However, a sustained inflammatory response can lead to tissue and organ damage and cause death. Our results may provide a theoretical basis for breeding rainbow trout for disease resistance.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Vibrioses , Vibrio , Animais , Brânquias , Vibrio/fisiologia , Perfilação da Expressão Gênica/veterinária , Fígado , Intestinos
7.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047515

RESUMO

Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-dependent serine/threonine kinase, mediates various neuronal functions, including cell death. Abnormal upregulation of DAPK1 is observed in human patients with neurological diseases, such as Alzheimer's disease (AD) and epilepsy. Ablation of DAPK1 expression and suppression of DAPK1 activity attenuates neuropathology and behavior impairments. However, whether DAPK1 regulates gene expression in the brain, and whether its gene profile is implicated in neuronal disorders, remains elusive. To reveal the function and pathogenic role of DAPK1 in neurological diseases in the brain, differential transcriptional profiling was performed in the brains of DAPK1 knockout (DAPK1-KO) mice compared with those of wild-type (WT) mice by RNA sequencing. We showed significantly altered genes in the cerebral cortex, hippocampus, brain stem, and cerebellum of both male and female DAPK1-KO mice compared to those in WT mice, respectively. The genes are implicated in multiple neural-related pathways, including: AD, Parkinson's disease (PD), Huntington's disease (HD), neurodegeneration, glutamatergic synapse, and GABAergic synapse pathways. Moreover, our findings imply that the potassium voltage-gated channel subfamily A member 1 (Kcna1) may be involved in the modulation of DAPK1 in epilepsy. Our study provides insight into the pathological role of DAPK1 in the regulatory networks in the brain and new therapeutic strategies for the treatment of neurological diseases.


Assuntos
Doença de Alzheimer , Transcriptoma , Humanos , Camundongos , Masculino , Feminino , Animais , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Encéfalo/metabolismo , Doença de Alzheimer/metabolismo , Morte Celular
8.
Fish Shellfish Immunol ; 121: 1-11, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974153

RESUMO

Mitogen-activated protein kinase kinases (MKKs) are intermediate kinases of mitogen-activated protein kinases (MAPKs) signaling pathways. MKKs are activated by mitogen-activated protein kinase kinase kinase (MKKK) and then the activated MKKs trigger the activation of downstream MAPKs. MAPK signaling pathways play an important role in regulating immune functions including apoptosis and inflammation. However, studies on identification and characterization of mkk repertoire in rainbow trout (Oncorhynchus mykiss) are still limited. Trout experienced 4 rounds (4R) of whole genome duplication (WGD), thus exhibiting increased paralogs of mkks with potentially functional diversity. In this study, we identified 17 mkk genes in trout and the following bacterial challenge (Vibrio anguillarum) studies showed functional diversity of different mkk subtypes. Vibrio anguillarum infection resulted in significantly up-regulated mkk2 subtypes in spleen and liver, and mkk4b3 in spleen, suggesting immunomodulation was regulated by activation of ERK, p38 and JNK pathways. Compared to other mkk subtypes, mkk6s were down-regulated in symptomatic group, rather than asymptomatic group. The organisms present negative feedback on MAPK activation, thus reducing extra damage to cells. We observed down-regulated mkk6s with up-regulated genes (dusp1 & dusp2) involved in negative feedback of MAPK activation. Based on these results, we might propose the distinct expression patterns of genes associated with MAPK pathways resulted in different phenotypes and symptoms of trout in response to bacterial challenge.


Assuntos
Proteínas de Peixes , Quinases de Proteína Quinase Ativadas por Mitógeno , Oncorhynchus mykiss , Vibrioses , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Vibrio , Vibrioses/veterinária
9.
J Water Health ; 20(4): 727-736, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35482388

RESUMO

We recently demonstrated the presence of naturalized populations of Escherichia coli in municipal sewage. We wanted to develop a quantitative polymerase chain reaction (qPCR) assay targeting the uspC-IS30-flhDC marker of naturalized wastewater E. coli and assess the prevalence of these naturalized strains in wastewater. The limit of detection for the qPCR assay was 3.0 × 10-8 ng of plasmid DNA template with 100% specificity. This strain was detected throughout the wastewater treatment process, including treated effluents. We evaluated the potential of this marker for detecting municipal sewage/wastewater contamination in water by comparing it to other human and animal markers of fecal pollution. Strong correlations were observed between the uspC-IS30-flhDC marker and the human fecal markers Bacteroides HF183 and HumM2, but not animal fecal markers, in surface and stormwater samples. The uspC-IS30-flhDC marker appears to be a potential E. coli-based marker for human wastewater contamination.


Assuntos
Águas Residuárias , Purificação da Água , Animais , Bacteroides , Escherichia coli/genética , Esgotos/análise , Águas Residuárias/análise
10.
Int Arch Occup Environ Health ; 95(6): 1293-1304, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661917

RESUMO

PURPOSE: To provide essential information of environmental triggers leading to CRD. METHODS: We investigated the short-term effects of ambient air pollutants on CRD-related hospitalizations in people aged ≥ 65 years in Ningbo. Data on 23,610 cases of CRD requiring hospitalization were collected from January 2015 to August 2017. After adjusting for temporal trends, seasonality, meteorological conditions, day of week (DOW), and public holidays, we used generalized additive Poisson distribution models to calculate the excess risks (ERs) and 95% confidence intervals (95% CIs) of CRD related hospitalizations. RESULTS: Our results showed that fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) were associated with CRD-related hospitalizations in people aged ≥ 65 years. We observed that each 10 µg/m3 increase (except for each 0.1 mg/m3 increase in CO) in the concentration of air pollutants, the percentage of CRD-related hospitalizations due to PM2.5, PM10, and SO2 exposure at lag 07, NO2 exposure at lag 03, and CO exposure at lag 0 increased by 2.13% (95% CI: 0.55%, 3.74%), 1.76% (95% CI: 0.70%, 2.83%), 8.24% (95% CI: 0.92%, 16.09%), 2.16% (95% CI: 0.26%, 4.05%), and 1.19% (95% CI: 0.26%, 2.12%), respectively. In addition, we found stronger effects of particulate matter in 75-84 years age group, on warmer days, and in asthmatics. CONCLUSION: In conclusion, air pollution may have adverse effects on CRD-related hospitalizations among people aged ≥ 65 years in Ningbo. Therefore, public health measures should be taken to improve air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , China/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Hospitalização , Hospitais , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Fatores de Tempo
11.
Clin Exp Hypertens ; 44(7): 601-609, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35787223

RESUMO

BACKGROUND: At present, no early diagnostic markers for essential hypertension (EH)-induced subclinical target organs damage (such as carotid plaque) are available. This study aimed to identify the circular RNAs (circRNAs) in EH with carotid plaques, and assess their utility as biomarkers. METHODS: First, circRNAs were identified through microarry analysis and database prediction. Second, a case-control study of EH patients with carotid plaque (n = 100) and healthy controls (n = 100) was performed to evaluate circRNAs expression in peripheral blood. Finally, receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value. RESULTS: Five circRNAs (hsa_circ_0105130, hsa_circ_0109569, hsa_circ_0072659, hsa_circ_0079586 and hsa_circ_0064684) were identified as the candidate circRNAs. We found that circRNAs were increased in case group compared with controls (P < .05). The results of ROC shown that these five circRNAs, especially hsa_circ_0109569 (AUC = 0.741), all had the moderate predictive value. CONCLUSIONS: Our study revealed circulating circRNAs may act as promising noninvasive biomarkers for early detection and population screening of EH-induced subclinical target organ injury.


Assuntos
RNA Circular , Biomarcadores , Estudos de Casos e Controles , Hipertensão Essencial , Humanos , Curva ROC
12.
Ecotoxicol Environ Saf ; 248: 114303, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403304

RESUMO

Zinc is an essential nutrient for life, but over-accumulation can result in toxicity. Anthropogenic activities can increase zinc concentrations in aquatic environments (e.g., to ∼0.46-1.00 mg/L), which are above the safe level of 0.1 mg/L. We investigated the behavior and physiology of zebrafish (Danio rerio) in response to environment-related exposure to zinc chloride at 0.0 (Ctrl), 1.0 (ZnCl2-low) and 1.5 (ZnCl2-high) mg/L for 6 weeks (the zinc conversion ratio of zinc chloride is ∼0.48 and the nominal (measured) values were: Ctrl, 0 (∼0.01); ZnCl2-low, 0.48 (∼0.51); ZnCl2-high, 0.72 (∼0.69) mg/L). Low-zinc exposure resulted in significantly increased locomotion and fast moving behaviors, while high-zinc exposure resulted in significantly increased aggression and freezing frequency. Single cell RNA-seq of neurons, astrocytes, and oligodendrocytes of the brain revealed expression of genes related to ion transport, neuron generation, and immunomodulation that were heterogeneously regulated by zinc exposure. Astrocyte-induced central nervous system inflammation potentially integrated neurotoxicity and behavior. Integrated analyses of brain and hepatic transcriptional signatures showed that genes (and pathways) dysregulated by zinc were associated with sensory functions, circadian rhythm, glucose and lipid metabolism, and amyloid ß-protein clearance. Our results showed that environment-related zinc contamination can be heterogeneously toxic to brain cells and can disturb coordination of brain-liver physiology. This may disrupt neurobehavior and cause a neurodegeneration-like syndrome in adult zebrafish.


Assuntos
Transtornos Cronobiológicos , Peixe-Zebra , Animais , Zinco/toxicidade , Peptídeos beta-Amiloides , Encéfalo , Agressão , Fígado
13.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31811037

RESUMO

Some chlorine-resistant Escherichia coli isolates harbor the locus of heat resistance (LHR), a genomic island conferring heat resistance. In this study, the protective effect of the LHR for cells challenged by chlorine and oxidative stress was quantified. Cloning of the LHR protected against NaClO (32 mM; 5 min), H2O2 (120 mM; 5 min), and peroxyacetic acid (105 mg/liter; 5 min) but not against 5.8 mM KIO4, 10 mM acrolein, or 75 mg/liter allyl isothiocyanate. The lethality of oxidizing treatments for LHR-negative strains of E. coli was about 2 log10 CFU/ml higher than that for LHR-positive strains of E. coli The oxidation of cytoplasmic proteins and membrane lipids was quantified with the fusion probe roGFP2-Orp1 and the fluorescent probe BODIPY581/591, respectively. The fragment of the LHR coding for heat shock proteins protected cytoplasmic proteins but not membrane lipids against oxidation. The middle fragment of the LHR protected against the oxidation of membrane lipids but not of cytoplasmic proteins. The addition of H2O2, NaClO, and peroxyacetic acid also induced green fluorescent protein (GFP) expression in the oxidation-sensitive reporter strain E. coli O104:H4 Δstx2::gfp::amp Cloning of pLHR reduced phage induction in E. coli O104:H4 Δstx2::gfp::amp after treatment with oxidizing chemicals. Screening of 160 strains of Shiga toxin-producing E. coli (STEC) revealed that none of them harbors the LHR, additionally suggesting that the LHR and Stx prophages are mutually exclusive. Taking our findings together, the contribution of the LHR to resistance to chlorine and oxidative stress is based on the protection of multiple cellular targets by different proteins encoded by the genetic island.IMPORTANCE Chlorine treatments are used in water and wastewater sanitation; the resistance of Escherichia coli to chlorine is thus of concern to public health. We show that a genetic island termed the locus of heat resistance (LHR) protects E. coli not only against heat but also against chlorine and other oxidizing chemicals, adding to our knowledge of the tools used by E. coli to resist stress. Specific detection of the oxidation of different cellular targets in combination with the cloning of fragments of the LHR provided insight into mechanisms of protection and demonstrated that different fragments of the LHR protect different cellular targets. In E. coli, the presence of the LHR virtually always excluded other virulence factors. It is tempting to speculate that the LHR is maintained by strains of E. coli with an environmental lifestyle but is excluded by pathogenic strains that adapted to interact with vertebrate hosts.


Assuntos
Cloro/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Loci Gênicos , Ilhas Genômicas , Oxidantes/farmacologia , Termotolerância/genética , Escherichia coli/efeitos dos fármacos , Genoma Bacteriano , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/genética
14.
Fish Shellfish Immunol ; 106: 887-897, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32866610

RESUMO

An energy trade-off is existed between immunological competence and growth. The axis of growth hormone releasing hormone, somatostatin, growth hormone, insulin-like growth factor (GHRH-SST-GH-IGF axis) regulates growth performances and immune competences in rainbow trout (Oncorhynchus mykiss). The salmonid-specific whole genome duplication event is known to result in duplicated copies of several key genes in GHRH-SST-GH-IGF axis. In this study, we evaluated the physiological functions of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity. Based on principal components analysis (PCA), we observed the overall expression profiles of GHRH-SST-GH-IGF axis were significantly altered by Vibrio anguillarum infection. Trout challenged with Vibrio anguillarum showed down-regulated igf1s subtypes and up-regulated igfbp1a1. The brain sst genes (sst1a, sst1b, sst3b and sst5) and igfpbs genes (igfbp4s and igfbp5b2) were significantly affected by V. anguillarum infection, while the igfbp4s, igfbp5s, igfbp6s and igf2bps genes showed significant changes in peripheral immune tissues in response to V. anguillarum infection. Gene enrichment analyses showed functional and signaling pathways associated with apoptosis (such as p53, HIF-1 or FoxO signaling) were activated. We further proposed a possible model that describes the IGF and IGFBPs-regulated interaction between cell growth and programmed death. Our study provided new insights into the physiological functions and potentially regulatory mechanisms of the GHRH-SST-GH-IGF axis, indicating the pleiotropic effects of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity in trout.


Assuntos
Doenças dos Peixes/imunologia , Hormônio Liberador de Hormônio do Crescimento/imunologia , Hormônio do Crescimento/imunologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/imunologia , Somatostatina/imunologia , Vibrioses/imunologia , Vibrio , Animais , Encéfalo/imunologia , Doenças dos Peixes/genética , Oncorhynchus mykiss/microbiologia , Transdução de Sinais , Somatomedinas/genética , Somatomedinas/imunologia , Somatostatina/genética , Vibrioses/genética , Vibrioses/veterinária
15.
Fish Shellfish Immunol ; 95: 180-189, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31600595

RESUMO

Low levels of stresses cause eustress while high stressful situations result in distress. Female rainbow trout (Oncorhynchus mykiss) was reared under crowded conditions to mimic the stressful environment of intensive fishery production. Trout was stocked for 300 days with initial densities of 4.6 ±â€¯0.02 (final: 31.1 ±â€¯0.62), 6.6 ±â€¯0.03 (final: 40.6 ±â€¯0.77), and 8.6 ±â€¯0.04 (final: 49.3 ±â€¯1.09) kg/m3 as SD1, SD2 and SD3. We assessed molecular, cellular and organismal parameters to understand the flexibility of neuro-endocrine-immune network during stress. Trout with higher initial density (SD3) displayed the slightly activated hypothalamus-pituitary-interrenal (HPI) axis with positively increased antioxidant enzyme activities and anti-inflammatory cytokine transcriptions on day 60 or 120. These results indicated that low level of stress was capable of exerting eustress by activating neuro-endocrine-immune network with beneficial adaptation. Transition from eustress to distress was induced by the increased intensity and duration of crowding stress on day 240 and 300. The prolonged activation of HPI axis resulted in suppressed growth hormone-insulin-like growth factor (GH-IGF) axis, up-regulated cytokine transcriptions and severe reactive oxygen species stress. Stress means reset of neuro-endocrine-immune network with energy expenditure and redistribution. Digestive ability of trout with distress was also inhibited on day 240 and 300, indicating a decreased total energy supplement and energy distribution for functions are not necessary for surviving such as growth and reproduction. Consequently, we observed the dyshomeostasis of energy balance and neuro-endocrine-immune network of trout during long-term crowding conditions.


Assuntos
Aglomeração , Glândulas Endócrinas/imunologia , Oncorhynchus mykiss/imunologia , Estresse Fisiológico/imunologia , Animais , Citocinas/imunologia , Feminino , Hipotálamo/imunologia , Hipófise/imunologia , Fatores de Tempo
16.
Gen Comp Endocrinol ; 259: 1-11, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29017850

RESUMO

To study the expression of four estrogen receptor genes (erα1, erα2, erß1, erß2) of female rainbow trout (Oncorhynchus mykiss) during first ovarian development, trouts were sampled from different ovarian stages. Serum E2 (estradiol) was measured by ELISA and estrogen receptors mRNA expression were examined by qRT-PCR. Our results showed a close association between increased erα1 and vitellogenin mRNA expression during ovarian maturation and increased erα2 mRNA expression in mature ovarian stages. Correlation analysis revealed that a negative relationship between serum E2 and ovarian erß1 (or hepatic erß2), but ovarian erß2 mRNA expression was relatively unchanged during first ovarian development. Trout were also reared in different densities as stocking density 1, 2 and 3 (SD1, 4.6-31.1 kg/m3; SD2, 6.6-40.6 kg/m3; SD3, 8.6-49.3 kg/m3) to elucidate effects of high density on estrogen receptor expression. Histology observation showed ovarian development of trout in higher densities were retard with a relatively early stage and fewer vitellogenin accumulation. Trout in high densities showed significantly decreased serum E2, erα mRNA expression and increasing trends of erß mRNA expression. A noticeable increase of ovarian erß2 mRNA expression was seen in trout when density is approaching to 50 kg/m3. In conclusion, we may hypothesize that increased erß mRNA expression triggered by high density result in decreased erα mRNA expression and vitellogenesis. As a result, ovarian development in higher densities was retard.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oncorhynchus mykiss/metabolismo , Ovário/embriologia , Receptores de Estrogênio/genética , Animais , Estradiol/sangue , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Fígado/metabolismo , Oncorhynchus mykiss/sangue , Oncorhynchus mykiss/genética , Ovário/citologia , Ovário/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Análise de Regressão , Vitelogênese/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo
17.
Appl Environ Microbiol ; 82(18): 5505-18, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27371583

RESUMO

UNLABELLED: Escherichia coli has been proposed to have two habitats-the intestines of mammals/birds and the nonhost environment. Our goal was to assess whether certain strains of E. coli have evolved toward adaptation and survival in wastewater. Raw sewage samples from different treatment plants were subjected to chlorine stress, and ∼59% of the surviving E. coli strains were found to contain a genetic insertion element (IS30) located within the uspC-flhDC intergenic region. The positional location of the IS30 element was not observed across a library of 845 E. coli isolates collected from various animal hosts or within GenBank or whole-genome reference databases for human and animal E. coli isolates (n = 1,177). Phylogenetics clustered the IS30 element-containing wastewater E. coli isolates into a distinct clade, and biomarker analysis revealed that these wastewater isolates contained a single nucleotide polymorphism (SNP) biomarker pattern that was specific for wastewater. These isolates belonged to phylogroup A, possessed generalized stress response (RpoS) activity, and carried the locus of heat resistance, features likely relevant to nonhost environmental survival. Isolates were screened for 28 virulence genes but carried only the fimH marker. Our data suggest that wastewater contains a naturalized resident population of E. coli We developed an endpoint PCR targeting the IS30 element within the uspC-flhDC intergenic region, and all raw sewage samples (n = 21) were positive for this marker. Conversely, the prevalence of this marker in E. coli-positive surface and groundwater samples was low (≤5%). This simple PCR assay may represent a convenient microbial source-tracking tool for identification of water samples affected by municipal wastewater. IMPORTANCE: The results of this study demonstrate that some strains of E. coli appear to have evolved to become naturalized populations in the wastewater environment and possess a number of stress-related genetic elements likely important for survival in this nonhost environment. The presence of non-host-adapted strains in wastewater challenges our understanding of using E. coli as a microbial indicator of wastewater treatment performance, suggesting that the E. coli strains present in human and animal feces may be very different from those found in treated wastewater.


Assuntos
Adaptação Biológica , Escherichia coli/classificação , Escherichia coli/fisiologia , Genótipo , Estresse Fisiológico , Águas Residuárias/microbiologia , Técnicas de Tipagem Bacteriana , Cloro/metabolismo , Análise por Conglomerados , Elementos de DNA Transponíveis , Desinfetantes/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Viabilidade Microbiana/efeitos dos fármacos , Filogenia , Polimorfismo de Nucleotídeo Único , Purificação da Água
18.
Mol Phylogenet Evol ; 103: 133-142, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27431906

RESUMO

Several studies have demonstrated that E. coli appears to display some level of host adaptation and specificity. Recent studies in our laboratory support these findings as determined by logic regression modeling of single nucleotide polymorphisms (SNP) in intergenic regions (ITGRs). We sought to determine the degree of host-specific information encoded in various ITGRs across a library of animal E. coli isolates using both whole genome analysis and a targeted ITGR sequencing approach. Our findings demonstrated that ITGRs across the genome encode various degrees of host-specific information. Incorporating multiple ITGRs (i.e., concatenation) into logic regression model building resulted in greater host-specificity and sensitivity outcomes in biomarkers, but the overall level of polymorphism in an ITGR did not correlate with the degree of host-specificity encoded in the ITGR. This suggests that distinct SNPs in ITGRs may be more important in defining host-specificity than overall sequence variation, explaining why traditional unsupervised learning phylogenetic approaches may be less informative in terms of revealing host-specific information encoded in DNA sequence. In silico analysis of 80 candidate ITGRs from publically available E. coli genomes was performed as a tool for discovering highly host-specific ITGRs. In one ITGR (ydeR-yedS) we identified a SNP biomarker that was 98% specific for cattle and for which 92% of all E. coli isolates originating from cattle carried this unique biomarker. In the case of humans, a host-specific biomarker (98% specificity) was identified in the concatenated ITGR sequences of rcsD-ompC, ydeR-yedS, and rclR-ykgE, and for which 78% of E. coli originating from humans carried this biomarker. Interestingly, human-specific biomarkers were dominant in ITGRs regulating antibiotic resistance, whereas in cattle host-specific biomarkers were found in ITGRs involved in stress regulation. These data suggest that evolution towards host specificity may be driven by different natural selection pressures on the regulome of E. coli among different animal hosts.


Assuntos
Biomarcadores/metabolismo , DNA Intergênico/genética , Escherichia coli/genética , Genoma Bacteriano , Especificidade de Hospedeiro/genética , Animais , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Bases de Dados Genéticas , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Variação Genética , Humanos , Modelos Logísticos , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA
19.
Gen Comp Endocrinol ; 236: 131-138, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27401261

RESUMO

The objective of this study was to determine the hypothalamus-pituitary-gonad (HPG) axis of female rainbow trout (Oncorhynchus mykiss) during early ovarian development and under high rearing density. Trouts were sampled from 240 (ovarian stage II) to 540 (ovarian stage IV) days following hatching (DFH) as control group (Ctrl, 4.6-31.1kg/m(3)) to determine HPG axis during early ovarian development. Trouts from the same batch of fertilized eggs were reared in two higher densities during 240-540 DFH as stocking density 1 and 2 (SD1, 6.6-40.6kg/m(3); SD2, 8.6-49.3kg/m(3)) to elucidate effects of high density on reproductive parameters. Dopamine, E2 (estradiol), 17α,20ß-P (17α,20ß-dihydroxy4-pregnen-3-one) and P4 (progesterone) were evaluated by radioimmunoassay or ELISA. mRNA expression of hypothalamic gnrh-1, -2 (gonadotropin-releasing hormone-1, -2), pituitary gonadotropins (fsh/lh, follicle-stimulating hormone/luteinizing hormone) and their cognate receptors (fshr/lhr) in ovaries were examined by qRT-PCR. Our findings demonstrated mRNA expression of hypothalamic sgnrh-1, pituitary fsh and ovarian fshr increased in early ovarian development (360 DFH). Serum 17α,20ß-P and pituitary lh mRNA expression first increased when trouts were in ovarian stage III (420 DFH). Ovaries were at different stages when reared in different densities. Long-term high density treatment (over 31.7kg/m(3)) resulted in decreased hypothalamic sgnrh-1, pituitary fsh, ovarian fshr, serum E2, and increased hypothalamus gnrh-2 and serum dopamine during vitellogenin synthesis, suggesting HPG of rainbow trout might be retarded under dense rearing condition.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Gonadotropinas Hipofisárias/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Ovário/metabolismo , Animais , Feminino , Oncorhynchus mykiss/crescimento & desenvolvimento
20.
Mol Phylogenet Evol ; 92: 72-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26115845

RESUMO

Host specificity in E. coli is widely debated. Herein, we used supervised learning logic-regression-based analysis of intergenic DNA sequence variability in E. coli in an attempt to identify single nucleotide polymorphism (SNP) biomarkers of E. coli that are associated with natural selection and evolution toward host specificity. Seven-hundred and eighty strains of E. coli were isolated from 15 different animal hosts. We utilized logic regression for analyzing DNA sequence data of three intergenic regions (flanked by the genes uspC-flhDC, csgBAC-csgDEFG, and asnS-ompF) to identify genetic biomarkers that could potentially discriminate E. coli based on host sources. Across 15 different animal hosts, logic regression successfully discriminated E. coli based on animal host source with relatively high specificity (i.e., among the samples of the non-target animal host, the proportion that correctly did not have the host-specific marker pattern) and sensitivity (i.e., among the samples from a given animal host, the proportion that correctly had the host-specific marker pattern), even after fivefold cross validation. Permutation tests confirmed that for most animals, host specific intergenic biomarkers identified by logic regression in E. coli were significantly associated with animal host source. The highest level of biomarker sensitivity was observed in deer isolates, with 82% of all deer E. coli isolates displaying a unique SNP pattern that was 98% specific to deer. Fifty-three percent of human isolates displayed a unique biomarker pattern that was 98% specific to humans. Twenty-nine percent of cattle isolates displayed a unique biomarker that was 97% specific to cattle. Interestingly, even within a related host group (i.e., Family: Canidae [domestic dogs and coyotes]), highly specific SNP biomarkers (98% and 99% specificity for dog and coyotes, respectively) were observed, with 21% of dog E. coli isolates displaying a unique dog biomarker and 61% of coyote isolates displaying a unique coyote biomarker. Application of a supervised learning method, such as logic regression, to DNA sequence analysis at certain intergenic regions demonstrates that some E. coli strains may evolve to become host-specific.


Assuntos
DNA Intergênico/genética , Escherichia coli/genética , Especificidade de Hospedeiro/genética , Lógica , Polimorfismo de Nucleotídeo Único/genética , Animais , Evolução Biológica , Bovinos , DNA Bacteriano/genética , Cães , Marcadores Genéticos/genética , Humanos , Análise de Regressão , Reprodutibilidade dos Testes , Seleção Genética , Análise de Sequência de DNA , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA