Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Small ; 20(1): e2304050, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712104

RESUMO

Semiconductor-based step-scheme (S-scheme) heterojunctions possess many merits toward mimicking natural photosynthesis. However, their applications for solar-to-chemical energy conversion are hindered by inefficient charge utilization and unsatisfactory surface reactivity. Herein, two synergistic protocols are demonstrated to overcome these limitations based on the construction of a hollow plasmonic p-metal-n S-scheme heterojunction photoreactor with spatially separated dual noble-metal-free cocatalysts. On one side, plasmonic Au, inserted into the heterointerfaces of CuS@ZnIn2 S4 core-shell nanoboxes, not only accelerates the transfer and recombination of useless charges, enabling a more thorough separation of useful ones for CO2 reduction and H2 O oxidation but also generates hot electrons and holes, respectively injects them into ZnIn2 S4 and CuS, further increasing the number of active carriers participating in redox reactions. On the other side, Fe(OH)x and Ti3 C2 cocatalysts, separately located on the CuS and ZnIn2 S4 surface, enrich the redox sites, adjust the reduction potential and pathway for selective CO2 -to-CH4 transformation, and balance the transfer and consumption of photocarriers. As expected, significantly enhanced activity and selectivity in CH4 production are achieved by the smart design along with nearly stoichiometric ratios of reduction and oxidation products. This study paves the way for optimizing artificial photosynthetic systems via rational interfacial channel introduction and surface cocatalyst modification.

2.
Small ; 19(2): e2204774, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36394158

RESUMO

Construction of core-shell semiconductor heterojunctions and plasmonic metal/semiconductor heterostructures represents two promising routes to improved light harvesting and promoted charge separation, but their photocatalytic activities are respectively limited by sluggish consumption of charge carriers confined in the cores, and contradictory migration directions of plasmon-induced hot electrons and semiconductor-generated electrons. Herein, a semiconductor/metal/semiconductor stacked core-shell design is demonstrated to overcome these limitations and significantly boost the photoactivity in CO2  reduction. In this smart design, sandwiched Au serves as a "stone", which "kills two birds" by inducing localized surface plasmon resonance for hot electron generation and mediating unidirectional transmission of conduction band electrons and hot electrons from TiO2  core to MoS2  shell. Meanwhile, upward band bending of TiO2  drives core-to-shell migration of holes through TiO2 -MoS2  interface. The co-existence of TiO2  â†’ Au â†’ MoS2  electron flow and TiO2  â†’ MoS2  hole flow contributes to spatial charge separation on different locations of MoS2  outer layer for overall redox reactions. Additionally, reduction potential of photoelectrons participating in the CO2  reduction is elaborately adjusted by tuning the thickness of MoS2  shell, and thus the product selectivity is delicately regulated. This work provides fresh hints for rationally controlling the charge transfer pathways toward high-efficiency CO2  photoreduction.

3.
Small ; 19(42): e2302717, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37340893

RESUMO

Step-scheme (S-scheme) heterojunctions have exhibited great potential in photocatalysis due to their extraordinary light harvesting and high redox capacities. However, inadequate S-scheme recombination of useless carriers in weak redox abilities increases the probability of their recombination with useful ones in strong redox capabilities. Herein, a versatile protocol is demonstrated to overcome this impediment based on the insertion of nano-piezoelectrics into the heterointerfaces of S-scheme heterojunctions. Under light excitation, the piezoelectric inserter promotes interfacial charge transfer and produces additional photocarriers to recombine with useless electrons and holes, ensuring a more thorough separation of powerful ones for CO2 reduction and H2 O oxidation. When introducing extra ultrasonic vibration, a piezoelectric polarization field is established, which allows efficient separation of charges generated by the embedded piezoelectrics and expedites their recombination with weak carriers, further increasing the number of strong ones participating in the redox reactions. Encouraged by the greatly improved charge utilization, significantly enhanced photocatalytic and piezophotocatalytic activities in CH4 , CO, and O2 production are achieved by the designed stacked catalyst. This work highlights the importance in strengthening the necessary charge recombination in S-scheme heterojunctions and presents an efficient and novel strategy to synergize photocatalysis and piezocatalysis for renewable fuels and value-added chemicals production.

4.
Small ; 19(17): e2207705, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36710245

RESUMO

Coupling hollow semiconductor with metal-organic frameworks (MOFs) holds great promise for constructing high-efficient CO2 photoreduction systems. However, energy band mismatch between them makes it difficult to exert their advantages to maximize the overall photocatalytic efficiency, since that the blockage of desirable interfacial charge transfer gives rise to the enrichment of photoelectrons and CO2 molecules on the different locations. Herein, an interfacial engineering is presented to overcome this impediment, based on the insertion of plasmonic metal into the heterointerfaces between them, forming a stacked semiconductor/metal@MOF photocatalyst. Experimental observations and theoretical simulations validate the critical roles of embedded Au in maneuvering the charge separation/transfer and surface reaction: (i) bridges the photoelectron transfer from hollow CdS (H-CdS) to ZIF-8; (ii) produces hot electrons and shifts them to ZIF-8; (iii) induces the formation of ZIF-8 defects in promoting the CO2 adsorption/activation and transformation to CO with low energy barriers. Consequently, the as-prepared H-CdS/Au@ZIF-8 with optimal ZIF-8 thickness exhibits distinctly boosted activity and superb selectivity in CO production as compared with H-CdS@ZIF-8 and other counterparts. This work provides protocols to take full advantages of components involved for enhanced solar-to-chemical energy conversion efficiency of hybrid artificial photosynthetic systems through rationally harnessing the charge transfer between them.

5.
Small ; 18(9): e2104681, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34914177

RESUMO

Construction of photocatalytic systems with spatially separated dual cocatalysts is considered as a promising route to modulate charge separation/transfer, promote surface redox reactivities, and prevent unwanted reverse reactions. However, past efforts on the loading of spatially separated double-cocatalysts are limited to hollow structured semiconductors with inner/outer surface and monocrystalline semiconductors with different exposed facets. To overcome this limitation, herein, enabled by a unique stacked photocatalyst design, a facile and versatile strategy for spatial separation of redox cocatalysts on various semiconductors without structural and morphological restriction is demonstrated. The smart design begins with the deposition of light-harvesting semiconductors on reduced graphene oxide (rGO) nanosheets, followed with the coverage of Ni(OH)2 outer layer. The ternary photocatalysts exhibit superior activities and stabilities of H2 O oxidation and selective CO2 -to-CO reduction, remarkably surpassing other counterparts. The origin of the enhanced performance is attributed to the synergistic interplay of rGO@Ni(OH)2 reduction cocatalysts surrounding the semiconductors and Ni(OH)2 oxidation cocatalysts directly supported by the semiconductors, which mitigates the charge recombination, supplies highly active and selective sites for overall reactions, and preserves the semiconductors from photocorrosion. This work presents a new approach to regulating the position of dual cocatalysts and ameliorating the net efficiency of photoredox catalysis.


Assuntos
Dióxido de Carbono , Semicondutores , Catálise , Oxirredução
6.
Small ; 17(45): e2102105, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558184

RESUMO

Rational phase engineering of reduction cocatalyst offers a promising route to modulate the photocatalytic activity and selectivity in the conversion of CO2 to chemical feedstocks. However, it remains a great challenge to choose a suitable phase given that high-crystallinity phase is more conducive to the charge transfer and separation, while amorphous phase is more favorable for the adsorption and activation of CO2 molecules. To resolve this dilemma, herein, with Pd as a well-defined model, a surface amorphization strategy has been developed to fabricate crystalline@amorphous semi-core-shell cocatalysts based on the transformation of outer layer atoms of crystalline cocatalysts to disorder phase. According to the theoretical and experimental analysis, in the heterostructured cocatalysts, crystalline core shuttles the photoexcited electrons from light-harvesting semiconductor to amorphous shell due to its strong electronic coupling with both components. Meanwhile, amorphous shell provides efficient active sites for preferential activation and conversion of CO2 and suppression of undesirable proton reduction. Benefiting from the synergistic effects between crystalline core and amorphous shell, the optimized heterophase cocatalyst with suitable thickness of amorphous shell achieves superior CO (22.2 µmol gcat-1 h-1 ) and CH4 (38.1 µmol gcat-1 h-1 ) formation rates with considerable selectivity and high stability in comparison with crystalline and amorphous counterparts.


Assuntos
Dióxido de Carbono , Procedimentos de Cirurgia Plástica , Eletrônica , Elétrons , Semicondutores
7.
J Nanosci Nanotechnol ; 19(2): 1026-1034, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360194

RESUMO

Nitrogen doped nanoporous activated carbon (N-NPAC) was prepared via the facile and effective KOH activation method using Zizania latifolia (ZL), a common Chinese aquatic vegetable, as the raw material. The biomass derived N-NPAC exhibited high content of nitrogen (18.4 at%), large surface area (1493.4 m²/g) and abundant nanopores. The unique physical-chemical structure endows the N-NPAC with great application potential in adsorbents. The performance of the N-NPAC for the adsorptive removal of bisphenol A (BPA) was studied. The results showed the adsorption processes were barely affected by solution pH. The adsorption kinetics are well-fitted by the pseudo-second-order kinetic model and the adsorption isotherms followed the Langmuir isotherm model. The maximum adsorption capacity calculated by the Langmuir isotherm model is 555.5 mg/g at 313 K, demonstrating the promise of the N-NPAC for the application in water cleanup. This study provides an example using the inexpensive and abundantly available biomass as the raw materials for the large scale production of nanocarbons and paves an avenue for the development of bio-derived nanomaterials.


Assuntos
Nanoporos , Poluentes Químicos da Água , Adsorção , Compostos Benzidrílicos , Cinética , Nitrogênio , Fenóis
8.
Small ; 13(38)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28796441

RESUMO

Integration of plasmonic metal and cocatalyst with semiconductor is a promising approach to simultaneously optimize the generation, transfer, and consumption of photoinduced charge carriers for high-performance photocatalysis. The photocatalytic activities of the designed hybrid structures are greatly determined by the efficiencies of charge transfer across the interfaces between different components. In this paper, interface design of Ag-BiOCl-PdOx hybrid photocatalysts is demonstrated based on the choice of suitable BiOCl facets in depositing plasmonic Ag and PdOx cocatalyst, respectively. It is found that the selective deposition of Ag and PdOx on BiOCl(110) planes realizes the superior photocatalytic activity in O2 evolution compared with the samples with other Ag and PdOx deposition locations. The reason was the superior hole transfer abilities of Ag-(110)BiOCl and BiOCl(110)-PdOx interfaces in comparison with those of Ag-(001)BiOCl and BiOCl(001)-PdOx interfaces. Two effects are proposed to contribute to this enhancement: (1) stronger electronic coupling at the BiOCl(110)-based interfaces resulted from the thinner contact barrier layer and (2) the shortest average hole diffuse distance realized by Ag and PdOx on BiOCl(110) planes. This work represents a step toward the interface design of high-performance photocatalyst through facet engineering.

9.
Nanotechnology ; 28(48): 484003, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28980525

RESUMO

Photocatalytic conversion of CO2 to value-added chemicals, a potential route to addressing the depletion of fossil fuels and anthropogenic climate change, is greatly limited by the low-efficient semiconductor photocatalyst. The integration of cocatalyst with light-harvesting semiconductor is a promising approach to enhancing the photocatalytic performance in CO2 reduction reaction. The enhancement is greatly determined by the catalytic active sites on the surface of cocatalyst. Herein, we demonstrate that the photocatalytic performance in the CO2 reduction reaction is greatly promoted by twin defects engineered Pd cocatalyst. In this work, Pd nanoicosahedrons with twin defects were in situ grown on C3N4 nanosheets, which effectively improve the photocatalytic performance in reduction of CO2 to CO and CH4 in comparison with Pd nanotetrahedrons without twin defects. It is proposed that the twin boundary (TB) terminations on the surface of Pd cocatalysts are highly catalytic active sites for CO2 reduction reaction. Based on the proposed mechanism, the photocatalytic activity and selectivity in CO2 reduction were further advanced through reducing the size of Pd icosahedral cocatalyst resulted from the increased surface density of TB terminations. The defect engineering on the surface of cocatalyst represents a novel route in realizing high-performance photocatalytic applications.

10.
J Sep Sci ; 39(19): 3818-3826, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27501328

RESUMO

Graphene-Fe3 O4 nanoparticles were prepared using one-step solvothermal method and characterized by X-ray diffraction, FTIR spectroscopy, scanning electron microscopy, and vibrating sample magnetometry. The results demonstrated that Fe3 O4 nanoparticles were homogeneously anchored on graphene nanosheets. The as-synthesized graphene-Fe3 O4 nanoparticles were employed as sorbent for magnetic solid-phase extraction of sulfonamides in milk prior to capillary electrophoresis analysis. The optimal capillary electrophoresis conditions were as follows: 60 mmol/L Na2 HPO4 containing 2 mmol/L ethylenediaminetetraacetic acid disodium salt and 24% v/v methanol as running buffer, separation voltage of 14 kV, and detection wavelength of 270 nm. The parameters affecting extraction efficiency including desorption solution, the amount of graphene-Fe3 O4 nanoparticles, extraction time, and sample pH were investigated in detail. Under the optimal conditions, good linearity (5-200 µg/L) with correlation coefficients ≥0.9910 was obtained. The limits of detection were 0.89-2.31 µg/L. The relative standard deviations for intraday and interday analyses were 4.9-8.5 and 4.0-9.0%, respectively. The proposed method was successfully applied to the analysis of sulfonamides in milk samples with recoveries ranging from 62.7 to 104.8% and relative standard deviations less than 10.2%.


Assuntos
Eletroforese Capilar/métodos , Grafite/química , Leite/química , Extração em Fase Sólida/métodos , Sulfonamidas/química , Sulfonamidas/isolamento & purificação , Adsorção , Animais , Bovinos , Contaminação de Alimentos/análise , Nanopartículas de Magnetita/química , Extração em Fase Sólida/instrumentação
11.
Analyst ; 139(24): 6536-41, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25347037

RESUMO

A simple and green approach was developed for the preparation of fluorescent Cu nanoclusters (NCs) using the artificial peptide CLEDNN as a template. The as-synthesized Cu NCs exhibited a high fluorescence quantum yield (7.3%) and good stability, along with excitation and temperature dependent fluorescent properties, which could be employed for temperature sensing. Further investigations demonstrated low toxicity of Cu NCs for cellular imaging.


Assuntos
Cobre/química , Corantes Fluorescentes/química , Nanoestruturas/química , Imagem Óptica , Peptídeos/química , Termômetros , Sobrevivência Celular/efeitos dos fármacos , Cobre/toxicidade , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Química Verde , Células HEK293 , Células HeLa , Humanos , Nanoestruturas/ultraestrutura , Peptídeos/síntese química , Peptídeos/toxicidade , Temperatura
12.
Artigo em Inglês | MEDLINE | ID: mdl-36897222

RESUMO

Utilizing solar and mechanical vibration energy for catalytic CO2 reduction and H2O oxidation is emerging as a promising way to simultaneously generate renewable energy and mitigate climate change, making it possible to integrate two energy resources into a reaction system for artificial piezophotosynthesis. However, the practical applications are hindered by undesirable charge recombination and sluggish surface reaction in the photocatalytic and piezocatalytic processes. This study proposes a dual cocatalyst strategy to overcome these obstacles and improve the piezophotocatalytic performance of ferroelectrics in overall redox reactions. With the photodeposition of AuCu reduction and MnOx oxidation cocatalysts on oppositely poled facets of PbTiO3 nanoplates, band bending occurs along with the formation of built-in electric fields on the semiconductor-cocatalyst interfaces, which, together with an intrinsic ferroelectric field, piezoelectric polarization field, and band tilting in the bulk of PbTiO3, provide strong driving forces for the directional drift of piezo- and photogenerated electrons and holes toward AuCu and MnOx, respectively. Besides, AuCu and MnOx enrich the active sites for surface reactions, significantly reducing the rate-determining barrier for CO2-to-CO and H2O-to-O2 transformation, respectively. Benefiting from these features, AuCu/PbTiO3/MnOx delivers remarkably improved charge separation efficiencies and significantly enhanced piezophotocatalytic activities in CO and O2 generation. This strategy opens a door for the better coupling of photocatalysis and piezocatalysis to promote the conversion of CO2 with H2O.

13.
ACS Appl Mater Interfaces ; 13(33): 39491-39500, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378912

RESUMO

Constructing a step-scheme (S-scheme) heterojunction represents a promising route to overcome the drawbacks of single-component and traditional heterostructured photocatalysts by simultaneously broadening the optical response range and optimizing the redox ability of the photocatalytic system, the efficiency of which greatly lies in the separation behaviors of photogenerated charge carriers with strong redox capabilities. Herein, we demonstrate interfacial facet engineering as an effective strategy to manipulate the charge transfer and separation for substantially improving the photocatalytic activities of S-scheme heterojunctions. The facet engineering is performed with the growth of ZnIn2S4 on (010) and (001) facet-dominated BiOBr nanosheets to fabricate ZIS/BOB-(010) and ZIS/BOB-(001) S-scheme heterojunctions, respectively. It is disclosed that a larger Fermi level difference between BiOBr-(001) and ZnIn2S4 enables the formation of a stronger built-in electric field with more serious band bending in the space charge region around the interface. As a result, the directional migration and recombination of pointless photoexcited electrons in the conduction band (CB) of BiOBr and holes in the valence band (VB) of ZnIn2S4 with weak redox ability are speeded up enormously, thereby contributing to more efficient spatial separation of powerful CB electrons of ZnIn2S4 and VB holes of BiOBr for participating in overall redox reactions. Profiting from these merits, the ZIS/BOB-(001) displays a significant superiority in photocatalytic H2 evolution over ZIS/BOB-(010) and mono-component counterparts. This work provides new deep insights into the rational construction of a S-scheme photocatalyst based on an interfacial facet design from the viewpoint of internal electric field regulation.

14.
ACS Appl Mater Interfaces ; 13(13): 15305-15314, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33775098

RESUMO

Piezoelectric semiconductor-based piezocatalysis has emerged as a promising approach for converting mechanical energy into chemical energy for renewable hydrogen generation and wastewater treatment under the action of mechanical vibration. Similar to photocatalysis, piezocatalysis is triggered by the separation, transfer, and consumption of piezo-generated electrons and holes. Inspired by this, herein, we report that the cocatalyst, which is widely used in photocatalysis, can also improve the semiconductor-based piezocatalytic properties. In the proof-of-concept design, well-defined Pd as a model cocatalyst has been deposited on the surface of piezoelectric BiFeO3 nanosheets, which not only facilitates the separation of charge carriers by accepting the piezoelectrons from BiFeO3 but also lowers the activation energy/overpotential through supplying highly active sites for the proton reduction reaction. Consequently, the as-obtained hybrid piezocatalyst delivers a high H2 evolution rate of 11.4 µmol h-1 (10 mg of catalyst), 19.0 times as high as that of bare BiFeO3. The band tilting induced by the piezoelectric potential is proposed to lower or eliminate the Schottky barrier and smooth the electron transfer from BiFeO3 to Pd, while the exposed facet, domain size, and loading amount of Pd cocatalyst are proved to be the key parameters determining the ultimate piezocatalytic activity. Our work provides some enlightenment on advancing the design and fabrication of more efficient piezocatalysts for H2 evolution based on rational engineering on the cocatalyst.

15.
Nanoscale ; 12(10): 5764-5791, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32129395

RESUMO

Solar driven photocatalysis and photoelectrocatalysis have emerged as promising strategies for clean, low-cost, and environmental-friendly production of renewable energy and removal of pollutants. There are three crucial steps for the photocatalytic and photoelectrochemical (PEC) processes: light absorption, charge separation and transportation, and surface catalytic reactions. While significant achievement has been made in developing multiple-component photocatalysts to optimize the three steps for improved solar-to-chemical energy conversion efficiency, it remains challenging when weak interfacial contact between components/particles hinders charge transfer, restricts electron-hole separation and lowers the structural stability of catalysts. Moreover, owing to the mismatch of energy bands, an undesirable charge transfer direction leads to an adverse consequence. To tackle these challenges, bridges are implemented to smoothen the interfacial charge transfer, improve the stability of catalysts, mediate the charge transfer directions and improve the photocatalytic/PEC performance. In this review, we present the advances in bridge engineering in photocatalytic/PEC systems. Starting with the definition and classifications of bridges, we summarize the architectures of the reported bridged photocatalysts. Then we systematically discuss the insight into the roles and fundamental mechanisms of bridges in various photocatalytic/PEC systems and their contributions to activity enhancement in various reactions. Finally, the challenges and perspectives of bridged photocatalysts are featured.

16.
Artigo em Inglês | MEDLINE | ID: mdl-30147734

RESUMO

BACKGROUND: This systematic review aimed at summarizing and evaluating the evidence from randomized controlled trials (RCTs) which used electroacupuncture (EA) to treat postoperative urinary retention (PUR). METHODS: We searched thirteen databases electronically through April 2018 without language restrictions. We included RCTs of women with PUR; other types of urinary retention or not-RCTs were excluded. Two independent reviewers extracted studies' characteristics, and disagreements were resolved by consensus. Data were pooled and expressed as standard mean difference (SMD) for continuous outcomes and odds ratio (OR) for dichotomous outcomes, with 95% confidence interval (CI). RESULTS: We found very low to moderate level of evidence that effects of less than or equal to a week were statistically significant: therapeutic effect improved (OR=4.21; 95%CI [3.04, 5.83]; P<0.00001), residual urine volume decreased (SMD=-13.24; 95%CI [-15.70, -10.78]; P<0.00001), bladder capacity increased (SMD=0.56; 95%CI [0.30, 0.83]; P<0.0001), and urinary flow rate improved (SMD=0.91; 95%CI [0.64, 1.18]; P<0.00001). Effect over a week was statistically significant as well. Therapeutic effect improved (OR=8.29; 95%CI [2.91, 24.25]; P<0.0001), residual urine volume decreased (SMD=-1.78; 95%CI [-2.66, -0.89]; P<0.0001), bladder capacity (SMD=0.92; 95%CI [0.61, 1.23]; P<0.00001) and urinary flow rate (SMD=1.69; 95%CI [0.59, 2.79]; P=0.003) increased, and first urination after surgery was earlier (SMD=-0.92; 95%CI [-1.37, -0.46]; P<0.0001), compared with physical exercise, medication, or no treatment. CONCLUSION: The efficacy and safety of EA on key outcomes in women with PUR are statistically significant, but the level of most evidence was very low or low. More large-scale, long-term RCTs with rigorous methodological quality are needed.

17.
J Chromatogr A ; 1447: 17-25, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27106398

RESUMO

The miniaturization of self-assembled solid phase extraction (m-SASPE) based on graphene oxide/chitosan (GO/CS) coupled with liquid chromatography-ultraviolet detection was developed for rapid screening of five sulfonamide residues in egg and honey. GO/CS was synthesized by solution blending method and characterized by FT-IR, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Parameters that affected extraction efficiency including sample pH, amount of the GO/CS, elution solvent and rotation speed were optimized in detail. Under the optimal conditions, good linear relationships between the peak area and the concentrations of the analytes were obtained. The linear ranges were 0.01-10.00µgg(-1) with correlation coefficients (r)≧0.9989. The method detection limits (MDLs) were in the range of 0.71-0.98ngg(-1). The relative standard deviations (RSDs) of intra- and inter-day analysis were less than 3.5 and 7.1%, respectively. The proposed method was successfully applied for the analysis of sulfonamide residues in egg and honey. The average recoveries for two samples spiked at levels from 0.02 to 2.0µgg(-1) were in the range of 75.3-105.2% with RSDs less than 13.5%.


Assuntos
Quitosana/química , Ovos/análise , Grafite/química , Mel/análise , Óxidos/química , Sulfonamidas/análise , Cromatografia Líquida/métodos , Microscopia Eletrônica de Varredura , Miniaturização , Extração em Fase Sólida/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
18.
ACS Appl Mater Interfaces ; 8(35): 23133-42, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27538462

RESUMO

The construction of a p-n heterojunction is an efficient strategy to resolve the limited light absorption and serious charge-carrier recombination in semiconductors and enhance the photocatalytic activity. However, the promotion effect is greatly limited by poor interfacial charge transfer efficiency as well as reduced redox ability of charge carriers. In this work, we demonstrate that the embedding of metal Pd into the interface between n-type C3N4 and p-type Cu2O can further enhance the interfacial charge transfer and increase the redox ability of charge carriers through the design of the C3N4-Pd-Cu2O stack nanostructure. The embedded Pd nanocubes in the stack structure not only trap the charge carriers from the semiconductors in promoting the electron-hole separation but also act as a Z-scheme "bridge" in keeping the strong reduction/oxidation ability of the electrons/holes for surface reactions. Furthermore, Pd nanocubes also increase the bonding strength between the two semiconductors. Enabled by this unique design, the hydrogen evolution achieved is dramatically higher than that of its counterpart C3N4-Cu2O structure without Pd embedding. The apparent quantum efficiency (AQE) is 0.9% at 420 nm for the designed C3N4-Pd-Cu2O. This work highlights the rational interfacial design of heterojunctions for enhanced photocatalytic performance.

19.
Nanoscale ; 8(45): 19014-19024, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27808315

RESUMO

The combination of upconversion nanocrystals with a wide-bandgap semiconductor is an efficient strategy to develop near-infrared (NIR)-responsive photocatalysts. The photocatalytic activity of the hybrid structures is greatly determined by the efficiency of the energy transfer on the interface between upconversion nanocrystals and the semiconductor. In this work, we demonstrate the interface design of a NaYF4:Yb,Tm-BiOCl hybrid structure based on the choice of suitable BiOCl facets in depositing NaYF4:Yb,Tm upconversion nanocrystals. It was found that the selective deposition of NaYF4:Yb,Tm nanocrystals on the BiOCl(110) facet can greatly enhance the photocatalytic performance in dye degradation compared with the sample with NaYF4:Yb,Tm nanocrystals loaded on the BiOCl(001) facet. Two effects were believed to contribute to this enhancement: (1) a stronger UV emission absorption ability of the BiOCl(110) facet from NaYF4:Yb,Tm in generating more photo-induced charge carriers resulted from the narrower bandgap; (2) a shorter diffusion distance of photogenerated charge carriers to the BiOCl(110) reactive facet for surface catalytic reactions owing to the spatial charge separation between different facets. This work highlights the rational interfacial design of an upconversion nanocrystal-semiconductor hybrid structure for enhanced energy transfer in photocatalysis.

20.
Talanta ; 144: 1279-86, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26452959

RESUMO

In the present study, a graphene-based magnetic nanocomposite (CoFe2O4-graphene, CoFe2O4-G) was synthesized and used successfully as an adsorbent for the magnetic solid phase extraction (MSPE) of sulfonamides for the first time. The surface morphologies and structures of the CoFe2O4-G nanocomposite were investigated by scanning electron microscopy (SEM), FT-IR, UV-vis spectroscopy, X-ray diffraction (XRD) and vibration sample magnetometer (VSM). Five sulfonamides, including sulfamerazine, sulfamethizole, sulfadoxine, sulfamethoxazole and sulfisoxazole were used as model analytes to evaluate the enrichment properties of the prepared adsorbent in MSPE. After preconcentration, the adsorbent could be conveniently separated from the aqueous samples by an external magnet, and the analytes desorbed from adsorbent were determined by high performance liquid chromatography-ultraviolet detection (HPLC-UV). Extraction parameters including sample pH, amount of sorbent, extraction time and desorption conditions were optimized in detail. Under the optimal conditions, good linear relationships between the peak areas and the concentrations of the analytes were obtained. The linear ranges were 0.02-50.00 mg L(-1) with correlation coefficients (r)≧0.9982. The limits of detection were less than 1.59 µg L(-1). Good reproducibility was obtained. The relative standard deviations of intra- and inter-day analysis were less than 4.3% and 6.5%, respectively. The proposed method was successfully applied for the analysis of sulfonamides in milk samples. The average recoveries determined for two milk samples spiked at levels from 5 to 20 µg L(-1) were 62.0-104.3% with relative standard deviations less than 14.0%. In addition, the CoFe2O4-G could be reused after cleaning with acetone and ultrapure water successively.


Assuntos
Cobalto/química , Resíduos de Drogas/isolamento & purificação , Compostos Férricos/química , Grafite/química , Imãs/química , Leite/química , Nanocompostos/química , Extração em Fase Sólida/métodos , Sulfonamidas/isolamento & purificação , Animais , Resíduos de Drogas/análise , Contaminação de Alimentos/análise , Concentração de Íons de Hidrogênio , Limite de Detecção , Modelos Moleculares , Conformação Molecular , Solventes/química , Sulfonamidas/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA