RESUMO
Objective: To investigate the protective effects against abnormal uterine bleeding (AUB) and possible mechanisms of Xue Ping tablets (XPT) using a rat model. Methods: A total of 58 unmated female and 25 male SPF SD rats aged 8-9 weeks were selected. Eight unmated female rats were selected as the blank control group according to the complete random method. The other 50 rats were mated in a female/male ratio of 2:1. In the morning after mating, vaginal smears were collected. Presence of vaginal plug or sperm was regarded as the first day of pregnancy. All pregnant rats were given 8.3 mg/kg of mifepristone by gavage at 8:00 a.m. and 100 µg/kg misoprostol by gavage at 6:00 p.m. on the seventh day of pregnancy to induce incomplete abortion, thereby establishing a rat model of AUB. Forty rats were randomly divided into model, low- (220 mg/kg), medium- (441 mg/kg), high-dose (882 mg/kg) XPT, and positive control groups. The positive group was given 130 mg/kg Gong Xue Ning (GXN). The model group and the blank group were given an equal amount of distilled water. Results: Compared with the model group, the volume of bleeding in the positive and middle- and high-dose XPT groups decreased (P < 0.05). Moreover, compared with the model group, the progesterone levels in the positive and XPT groups were significantly increased. Immunohistochemistry showed that XPT significantly decreased the expression levels of VEGF, p-ERK, NF-κB, SAA, MMP-2, MMP-9, TIMP-1, TIMP-2 and TIMP-3. WB results showed that XPT significantly decreased the expression levels of p-ERK, MMP-9, NF-κB, MMP-2 and VEGF. QRT-PCR results showed that XPT significantly decreased the expression levels of VEGF, NF-κB, SAA, MMP-2, TIMP-1, TIMP-2 and TIMP-3 (P < 0.05). Conclusions: XPT could reduce AUB by inhibiting the inflammatory factors involved in the VEGF-ERK1/2 pathway.
RESUMO
In some cancers mutant p53 promotes the occurrence, development, metastasis and drug resistance of tumours, with targeted protein degradation seen as an effective therapeutic strategy. However, a lack of specific autophagy receptors limits this. Here, we propose the synthesis of biomimetic nanoreceptors (NRs) that mimic selective autophagy receptors. The NRs have both a component for targeting the desired protein, mutant-p53-binding peptide, and a component for enhancing degradation, cationic lipid. The peptide can bind to mutant p53 while the cationic lipid simultaneously targets autophagosomes and elevates the levels of autophagosome formation, increasing mutant p53 degradation. The NRs are demonstrated in vitro and in a patient-derived xenograft ovarian cancer model in vivo. The work highlights a possible direction for treating diseases by protein degradation.
Assuntos
Autofagia , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteólise , Proteínas Mutantes/metabolismo , Proteínas Mutantes/farmacologia , Linhagem Celular Tumoral , Peptídeos/metabolismo , Lipídeos/farmacologiaRESUMO
Myeloid-derived suppressor cells (MDSCs) play a crucial role in the immune escape mechanisms that limit the efficacy of immunotherapeutic strategies. In the tumor microenvironment, NLRP3 inflammasome-driven Interleukin-1ß (IL-1ß) production serves to dampen antitumor immune responses, promoting tumor growth, progression, and immunosuppression. In this study, we revealed that gold nanoparticles (Au NPs) with a size of 30 nm disrupted NLRP3 inflammasome, but not other inflammasomes, in bone marrow-derived macrophages through abrogating NLRP3-NEK7 interactions mediated by reactive oxygen species (ROS). Density functional theory (DFT) calculations provided insights into the mechanism underlying the exceptional ROS scavenging capabilities of Au NPs. Additionally, when coupled with H6, a small peptide targeting MDSCs, Au NPs demonstrated the capacity to effectively reduce IL-1ß levels and diminish the MDSCs population in tumor microenvironment, leading to enhanced T cell activation and increased immunotherapeutic efficacy in mouse tumor models that are sensitive and resistant to PD-1 inhibition. Our findings unraveled a novel approach wherein peptide-modified Au NPs relieved the suppressive impact of the tumor microenvironment by inhibiting MDSCs-mediated IL-1ß release, which is the first time reported the employing a nanostrategy at modulating MDSCs to reverse the immunosuppressive microenvironment and may hold promise as a potential therapeutic agent for cancer immunotherapy.
Assuntos
Nanopartículas Metálicas , Células Supressoras Mieloides , Neoplasias , Camundongos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ouro , Receptor de Morte Celular Programada 1 , Espécies Reativas de Oxigênio , Imunoterapia , Microambiente TumoralRESUMO
Tamoxifen is the most commonly used treatment for estrogen-receptor (ER) positive breast cancer patients, but its efficacy is severely hampered by resistance. PI3K/AKT/mTOR pathway inhibition was proven to augment the benefit of endocrine therapy and exhibited potential for reversing tamoxifen-induced resistance. However, the vast majority of PI3K inhibitors currently approved for clinical use are unsatisfactory in terms of safety and efficacy. We developed two-dimensional CuPd (2D-CuPd) nanosheets with oxidase and peroxidase nanozyme activities to offer a novel solution to inhibit the activity of the PI3K/AKT/mTOR pathway. 2D-CuPd exhibit superior dual nanozyme activities converting hydrogen peroxide accumulated in drug-resistant cells into more lethal hydroxyl radicals while compensating for the insufficient superoxide anion produced by tamoxifen. The potential clinical utility was further demonstrated in an orthotopically implanted tamoxifen-resistant PDX breast cancer model. Our results reveal a novel nanozyme ROS-mediated protein mechanism for the regulation of the PI3K subunit, illustrate the cellular pathways through which increased p85ß protein expression contributes to tamoxifen resistance, and reveal p85ß protein as a potential therapeutic target for overcoming tamoxifen resistance. 2D-CuPd is the first reported nanomaterial capable of degrading PI3K subunits, and its high performance combined with further materials engineering may lead to the development of nanozyme-based tumor catalytic therapy.
Assuntos
Neoplasias da Mama , Tamoxifeno , Feminino , Humanos , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Cobre , Chumbo , NanoestruturasRESUMO
ABBREVIATIONS: 3-MA, 3-methyladenine; AIE, aggregation-induced emission; AIEgens, aggregation-induced emission luminogens; ATG5, autophagy related 5; BMDM, bone marrow-derived macrophage; CQ, chloroquine; DiD, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate; DiO, 3,3'-dioctadecyloxacarbocyanine perchlorate; DMSO, dimethyl sulfoxide; d-THP-1, differentiated THP-1; FACS, fluorescence activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; GABARAP, GABA type A receptor-associated protein; GFP, green fluorescent protein; HBSS, Hanks' balanced salt solution; HPLC, high-performance liquid chromatography; HRP, horseradish peroxidase; IL1B, interleukin 1 beta; KT, an AIE probe composed of a cell-penetrating peptide and an AIEgen tetraphenyl ethylene; LC3-II, lipidated LC3; LDH, lactate dehydrogenase; LIR, LC3-interacting region; LKR, engineered molecular probe composed of an LC3-interacting peptide, a cell-penetrating peptide and a non-AIE fluorescent molecule rhodamine; LKT, engineered molecular probe composed of an LC3-interacting peptide, a cell-penetrating peptide and an AIEgen tetraphenyl ethylene; LPS, lipopolysaccharide; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MEF, mouse embryonic fibroblast; mRFP, monomeric red fluorescent protein; NHS, N-hydroxysuccinimide; NLRP3, NLR family pyrin domain containing 3; PBS, phosphate-buffered saline; PCC, pearson's correlation coefficient; PL, photoluminescence; PMA, phorbol 12-myristate 13-acetate; RAP, rapamycin; RIM, restriction of intramolecular motions; s.e.m., standard error of the mean; SPR, surface plasmon resonance; SQSTM1/p62, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TPE, tetraphenylethylene; TPE-yne, 1-(4-ethynylphenyl)-1,2,2-triphenylethene; Tre, trehalose; u-THP-1: undifferentiated THP-1; UV-Vis, ultraviolet visible.
Assuntos
Autofagia , Peptídeos Penetradores de Células , Animais , Camundongos , Fibroblastos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Fluorescência Verde , Sondas Moleculares , EtilenosRESUMO
NLRP3, the sensor protein of the NLRP3 inflammasome, plays central roles in innate immunity. Over-activation of NLRP3 inflammasome contributes to the pathogenesis of a variety of inflammatory diseases, while gain-of-function mutations of NLRP3 cause cryopyrin-associated periodic syndromes (CAPS). NLRP3 inhibitors, particularly those that inhibit inflammasome assembly and activation, are being intensively pursued, but alternative approaches for targeting NLRP3 would be highly desirable. During priming NLRP3 protein is synthesized on demand and becomes attached to the membranes of ER and mitochondria. Here, we show that fatty acid amide hydrolase (FAAH), the key integral membrane enzyme in the endocannabinoid system, unexpectedly served the critical membrane-anchoring and stabilizing role for NLRP3. The specific interaction between NLRP3 and FAAH, mediated by the NACHT and LRR domains of NLRP3 and the amidase signature sequence of FAAH, was essential for preventing CHIP- and NBR1-mediated selective autophagy of NLRP3. Heterozygous knockout of FAAH, resulting in ~50% reduction in both FAAH and NLRP3 expression, was sufficient to substantially inhibit the auto-inflammatory phenotypes of the NLRP3-R258W knock-in mice, while homozygous FAAH loss almost completely abrogates these phenotypes. Interestingly, select FAAH inhibitors, in particular URB597 and PF-04457845, disrupted NLRP3-FAAH interaction and induced autophagic NLRP3 degradation, leading to diminished inflammasome activation in mouse macrophage cells as well as in peripheral blood mononuclear cells isolated from CAPS patients. Our results unraveled a novel NLRP3-stabilizing mechanism and pinpointed NLRP3-FAAH interaction as a potential drug target for CAPS and other NLRP3-driven diseases.
Assuntos
Síndromes Periódicas Associadas à Criopirina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Endocanabinoides/metabolismo , Leucócitos Mononucleares/metabolismo , Síndromes Periódicas Associadas à Criopirina/genética , Síndromes Periódicas Associadas à Criopirina/metabolismo , Amidoidrolases/genéticaRESUMO
Radiotherapy (RT), through the generation of reactive oxygen species (ROS) and DNA damage to tumor cells caused by high-energy irradiation, has been a widely applied cancer treatment strategy in clinic. However, the therapeutic effect of traditional RT is restricted by the insufficient radiation energy deposition and the side effects on normal tissues. Recently, multifunctional nano-formulations and synergistic therapy has been developed as attractive strategies for used to enhancing the efficacy and safety of RT. Herein, we show that a bimetallic nanozyme (copper-modified ruthenium nanoparticles, RuCu NPs), containing the high atomic number (Z) element Ru as a novel radiosensitizer, offers an ideal solution to RT sensitization, with ultrasensitive peroxidase (POD)-like activity and catalase (CAT)-like activity. Density functional theory (DFT) calculations also clarified the optimal POD-like catalytic ratio of RuCu NPs and further revealed the mechanism of its supper catalytic activity. Under X-ray exposure, RuCu NPs coated with poly(ethylene glycol) (PEG) exhibited simultaneously improved the ROS production and relieved tumor hypoxia in the acid tumor microenvironment (TME), and demonstrated remarkable therapeutic efficacy in the MDA-MB-231 breast cancer model. Our results provide a proof-of-concept for a RT sensitization strategy, which combine the intrinsic nature of high-Z element and the advantages of nanozymes to overcome the tricky drawbacks existed in radiotherapy, and further open a new direction of exploring novel nanozyme-based strategies for tumor catalytic therapy and synergistic radiotherapy.
Assuntos
Nanopartículas , Neoplasias , Radiossensibilizantes , Humanos , Espécies Reativas de Oxigênio , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Hipóxia Tumoral , Microambiente Tumoral , Linhagem Celular TumoralRESUMO
Point mutations within the DNA-binding domain of the TP53 gene occur in a significant percentage of human cancer, leading to cellular accumulation of highly stabilized mutant p53 proteins (mutp53) with tumor-promoting properties. Depletion of mutp53, through inducing either autophagic or proteasomal degradation, is an attractive strategy for the therapy of p53-mutated cancer, but the currently-known degradation inducers, almost exclusively small molecules, are inadequate. Here we show that pH-responsive zeolitic imidazolate framework-8 (ZIF-8) offers a novel solution to mutp53 degradation. ZIF-8 facilitated ubiquitination-mediated and glutathionylation-dependent proteasomal degradation of all of the nine mutp53 we tested, including six hot-spot mutp53, but not the wild-type p53 protein. Sustained elevation of intracellular Zn++ level, resulted from decomposition of the internalized ZIF-8 in the acidic endosomes, decreased the intracellular reduced glutathione (GSH): oxidized glutathione (GSSG) ratio and was essential for mutp53 glutathionylation and degradation. ZIF-8 modified with an Z1-RGD peptide, exhibiting enhanced cellular internalization and improved decomposition behavior, preferentially killed mutp53-expressing cancer cells and demonstrated remarkable therapeutic efficacy in a p53 S241F ES-2 ovarian cancer model as well as in a p53 Y220C patient-derived xenograft (PDX) breast cancer model. The ability to induce wide-spectrum mutp53 degradation gives ZIF-8 a clear advantage over other degradation-inducers, and engineered nanomaterials may be promising alternatives to small molecules for the development of mutp53-targeting drugs.