Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(3): 1149-1161, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38650444

RESUMO

PURPOSE: To improve image quality, mitigate quantification biases and variations for free-breathing liver proton density fat fraction (PDFF) and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ quantification accelerated by radial k-space undersampling. METHODS: A free-breathing multi-echo stack-of-radial MRI method was developed with compressed sensing with multidimensional regularization. It was validated in motion phantoms with reference acquisitions without motion and in 11 subjects (6 patients with nonalcoholic fatty liver disease) with reference breath-hold Cartesian acquisitions. Images, PDFF, and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ maps were reconstructed using different radial view k-space sampling factors and reconstruction settings. Results were compared with reference-standard results using Bland-Altman analysis. Using linear mixed-effects model fitting (p < 0.05 considered significant), mean and SD were evaluated for biases and variations of PDFF and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ , respectively, and coefficient of variation on the first echo image was evaluated as a surrogate for image quality. RESULTS: Using the empirically determined optimal sampling factor of 0.25 in the accelerated in vivo protocols, mean differences and limits of agreement for the proposed method were [-0.5; -33.6, 32.7] s-1 for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-1.0%; -5.8%, 3.8%] for PDFF, close to those of a previous self-gating method using fully sampled radial views: [-0.1; -27.1, 27.0] s-1 for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-0.4%; -4.5%, 3.7%] for PDFF. The proposed method had significantly lower coefficient of variation than other methods (p < 0.001). Effective acquisition time of 64 s or 59 s was achieved, compared with 171 s or 153 s for two baseline protocols with different radial views corresponding to sampling factor of 1.0. CONCLUSION: This proposed method may allow accelerated free-breathing liver PDFF and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ mapping with reduced biases and variations.


Assuntos
Processamento de Imagem Assistida por Computador , Fígado , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Feminino , Masculino , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Respiração , Algoritmos , Adulto , Reprodutibilidade dos Testes , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Movimento (Física) , Tecido Adiposo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Idoso
2.
J Magn Reson Imaging ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436994

RESUMO

BACKGROUND: Balanced steady-state free precession (bSSFP) imaging is commonly used in cardiac cine MRI but prone to image artifacts. Ferumoxytol-enhanced (FE) gradient echo (GRE) has been proposed as an alternative. Utilizing the abundance of bSSFP images to develop a computationally efficient network that is applicable to FE GRE cine would benefit future network development. PURPOSE: To develop a variable-splitting spatiotemporal network (VSNet) for image reconstruction, trained on bSSFP cine images and applicable to FE GRE cine images. STUDY TYPE: Retrospective and prospective. SUBJECTS: 41 patients (26 female, 53 ± 19 y/o) for network training, 31 patients (19 female, 49 ± 17 y/o) and 5 healthy subjects (5 female, 30 ± 7 y/o) for testing. FIELD STRENGTH/SEQUENCE: 1.5T and 3T, bSSFP and GRE. ASSESSMENT: VSNet was compared to VSNet with total variation loss, compressed sensing and low rank methods for 14× accelerated data. The GRAPPA×2/×3 images served as the reference. Peak signal-to-noise-ratio (PSNR), structural similarity index (SSIM), left ventricular (LV) and right ventricular (RV) end-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF) were measured. Qualitative image ranking and scoring were independently performed by three readers. Latent scores were calculated based on scores of each method relative to the reference. STATISTICS: Linear mixed-effects regression, Tukey method, Fleiss' Kappa, Bland-Altman analysis, and Bayesian categorical cumulative probit model. A P-value <0.05 was considered statistically significant. RESULTS: VSNet achieved significantly higher PSNR (32.7 ± 0.2), SSIM (0.880 ± 0.004), rank (2.14 ± 0.06), and latent scores (-1.72 ± 0.22) compared to other methods (rank >2.90, latent score < -2.63). Fleiss' Kappa was 0.52 for scoring and 0.61 for ranking. VSNet showed no significantly different LV and RV ESV (P = 0.938) and EF (P = 0.143) measurements, but statistically significant different (2.62 mL) EDV measurements compared to the reference. CONCLUSION: VSNet produced the highest image quality and the most accurate functional measurements for FE GRE cine images among the tested 14× accelerated reconstruction methods. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 1.

3.
Magn Reson Med ; 90(3): 1114-1120, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37125645

RESUMO

PURPOSE: Body composition MRI captures the distribution of fat and lean tissues throughout the body, and provides valuable biomarkers of obesity, metabolic disease, and muscle disorders, as well as risk assessment. Highly reproducible protocols have been developed for 1.5T and 3T MRI. The purpose of this work was to demonstrate the feasibility and test-retest repeatability of MRI body composition profiling on a 0.55T whole-body system. METHODS: Healthy adult volunteers were scanned on a whole-body 0.55T MRI system using the integrated body RF coil. Experiments were performed to refine parameter settings such as TEs, resolution, flip angle, bandwidth, acceleration, and oversampling factors. The final protocol was evaluated using a test-retest study with subject removal and replacement in 10 adult volunteers (5 M/5F, age 25-60, body mass index 20-30). RESULTS: Compared to 1.5T and 3T, the optimal flip angle at 0.55T was higher (15°), due to the shorter T1 times, and the optimal echo spacing was larger, due to smaller chemical shift between water and fat. Overall image quality was comparable to conventional field strengths, with no significant issues with fat/water swapping or inadequate SNR. Repeatability coefficient of visceral fat, subcutaneous fat, total thigh muscle volume, muscle fat infiltration, and liver fat were 11.8 cL (2.2%), 46.9 cL (1.9%), 14.6 cL (0.5%), 0.1 pp (2%), and 0.2 pp (5%), respectively (coefficient of variation in parenthesis). CONCLUSIONS: We demonstrate that 0.55T body composition MRI is feasible and present optimized scan parameters. The resulting images provide satisfactory quality for automated post-processing and produce repeatable results.


Assuntos
Tecido Adiposo , Imageamento por Ressonância Magnética , Adulto , Humanos , Pessoa de Meia-Idade , Estudos de Viabilidade , Tecido Adiposo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Composição Corporal , Água
4.
Magn Reson Med ; 87(1): 281-291, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34412158

RESUMO

PURPOSE: To develop an accelerated k-space shift calibration method for free-breathing 3D stack-of-radial MRI quantification of liver proton-density fat fraction (PDFF) and R2∗ . METHODS: Accelerated k-space shift calibration was developed to partially skip acquisition of k-space shift data in the through-plane direction then interpolate in processing, as well as to reduce the in-plane averages. A multi-echo stack-of-radial sequence with the baseline calibration was evaluated on a phantom versus vendor-provided reference-standard PDFF and R2∗ values at 1.5T, and in 13 healthy subjects and 5 clinical subjects at 3T with respect to reference-standard breath-hold Cartesian acquisitions. PDFF and R2∗ maps were calculated with different calibration acceleration factors offline and compared to reference-standard values using Bland-Altman analysis. Bias and uncertainty were evaluated using normal distribution and Bayesian probability of difference (P < .05 considered significant). RESULTS: Bland-Altman plots of phantom and in vivo data showed that substantial acceleration was highly feasible in both through-plane and in-plane directions. Compared to the baseline calibration without acceleration, Bayesian analysis revealed no significant differences on biases and uncertainties of PDFF and R2∗ measurements with all acceleration methods in this study, except the method with through-plane acceleration equaling slices and averages equaling 20 for PDFF and R2∗ (both P < .001) for the phantom. A six-fold reduction in equivalent calibration acquisition time (time saving ≥25 s and ≥80.7%) was achieved using recommended acceleration factors for the in vivo protocols in this study. CONCLUSION: This proposed method may allow accelerated calibration for free-breathing stack-of-radial MRI PDFF and R2∗ mapping.


Assuntos
Fígado , Imageamento por Ressonância Magnética , Tecido Adiposo/diagnóstico por imagem , Teorema de Bayes , Calibragem , Humanos , Fígado/diagnóstico por imagem , Reprodutibilidade dos Testes
5.
Magn Reson Med ; 87(1): 120-137, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418152

RESUMO

PURPOSE: To develop a 3D multitasking multi-echo (MT-ME) technique for the comprehensive characterization of liver tissues with 5-min free-breathing acquisition; whole-liver coverage; a spatial resolution of 1.5 × 1.5 × 6 mm3 ; and simultaneous quantification of T1 , water-specific T1 (T1w ), proton density fat fraction (PDFF), and R2∗ . METHODS: Six-echo bipolar spoiled gradient echo readouts following inversion recovery preparation was performed to generate T1 , water/fat, and R2∗ contrast. MR multitasking was used to reconstruct the MT-ME images with 3 spatial dimensions: 1 T1 recovery dimension, 1 multi-echo dimension, and 1 respiratory dimension. A basis function-based approach was developed for T1w quantification, followed by the estimation of R2∗ and T1 -corrected PDFF. The intrasession repeatability and agreement against references of MT-ME measurements were tested on a phantom and 15 clinically healthy subjects. In addition, 4 patients with confirmed liver diseases were recruited, and the agreement between MT-ME measurements and references was assessed. RESULTS: MT-ME produced high-quality, coregistered T1 , T1w , PDFF, and R2∗ maps with good intrasession repeatability and substantial agreement with references on phantom and human studies. The intra-class coefficients of T1 , T1w , PDFF, and R2∗ from the repeat MT-ME measurements on clinically healthy subjects were 0.989, 0.990, 0.999, and 0.988, respectively. The intra-class coefficients of T1 , PDFF, and R2∗ between the MT-ME and reference measurements were 0.924, 0.987, and 0.975 in healthy subjects and 0.980, 0.999, and 0.998 in patients. The T1w was independent to PDFF (R = -0.029, P = .904). CONCLUSION: The proposed MT-ME technique quantifies T1 , T1w , PDFF, and R2∗ simultaneously and is clinically promising for the comprehensive characterization of liver tissue properties.


Assuntos
Prótons , Água , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
6.
J Magn Reson Imaging ; 55(5): 1407-1416, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34545639

RESUMO

BACKGROUND: Hepatic iron content (HIC) is an important parameter for the management of iron overload. Non-invasive HIC assessment is often performed using biopsy-calibrated two-dimensional breath-hold Cartesian gradient echo (2D BH GRE) R2* -MRI. However, breath-holding is not possible in most pediatric patients or those with respiratory problems, and three-dimensional free-breathing radial GRE (3D FB rGRE) has emerged as a viable alternative. PURPOSE: To evaluate the performance of a 3D FB rGRE and validate its R2* and fat fraction (FF) quantification with 3D breath-hold Cartesian GRE (3D BH cGRE) and biopsy-calibrated 2D BH GRE across a wide range of HICs. STUDY TYPE: Retrospective. SUBJECTS: Twenty-nine patients with hepatic iron overload (22 females, median age: 15 [5-25] years). FIELD STRENGTH/SEQUENCE: Three-dimensional radial and 2D and 3D Cartesian multi-echo GRE at 1.5 T. ASSESSMENT: R2* and FF maps were computed for 3D GREs using a multi-spectral fat model and 2D GRE R2* maps were calculated using a mono-exponential model. Mean R2* and FF values were calculated via whole-liver contouring and T2* -thresholding by three operators. STATISTICAL TESTS: Inter- and intra-observer reproducibility was assessed using Bland-Altman and intraclass correlation coefficient (ICC). Linear regression and Bland-Altman analysis were performed to compare R2* and FF values among the three acquisitions. One-way repeated-measures ANOVA and Wilcoxon signed-rank tests, respectively, were used to test for significant differences between R2* and FF values obtained with different acquisitions. Statistical significance was assumed at P < 0.05. RESULTS: The mean biases and ICC for inter- and intra-observer reproducibility were close to 0% and >0.99, respectively for both R2* and FF. The 3D FB rGRE R2* and FF values were not significantly different (P > 0.44) and highly correlated (R2 ≥ 0.98) with breath-hold Cartesian GREs, with mean biases ≤ ±2.5% and slopes 0.90-1.12. In non-breath-holding patients, Cartesian GREs showed motion artifacts, whereas 3D FB rGRE exhibited only minimal streaking artifacts. DATA CONCLUSION: Free-breathing 3D radial GRE is a viable alternative in non-breath-hold patients for accurate HIC estimation. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Sobrecarga de Ferro , Ferro , Adolescente , Biópsia , Criança , Feminino , Humanos , Sobrecarga de Ferro/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos
7.
Magn Reson Med ; 85(3): 1237-1247, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32869349

RESUMO

PURPOSE: The goal of this study was to determine the accuracy of displacement-encoding with stimulated echoes (DENSE) MRI in a tissue motion phantom with displacements representative of those observed in human brain tissue. METHODS: The phantom was comprised of a plastic shaft rotated at a constant speed. The rotational motion was converted to a vertical displacement through a camshaft. The phantom generated repeatable cyclical displacement waveforms with a peak displacement ranging from 92 µm to 1.04 mm at 1-Hz frequency. The surface displacement of the tissue was obtained using a laser Doppler vibrometer (LDV) before and after the DENSE MRI scans to check for repeatability. The accuracy of DENSE MRI displacement was assessed by comparing the laser Doppler vibrometer and DENSE MRI waveforms. RESULTS: Laser Doppler vibrometer measurements of the tissue motion demonstrated excellent cycle-to-cycle repeatability with a maximum root mean square error of 9 µm between the ensemble-averaged displacement waveform and the individual waveforms over 180 cycles. The maximum difference between DENSE MRI and the laser Doppler vibrometer waveforms ranged from 15 to 50 µm. Additionally, the peak-to-peak difference between the 2 waveforms ranged from 1 to 18 µm. CONCLUSION: Using a tissue phantom undergoing cyclical motion, we demonstrated the percent accuracy of DENSE MRI to measure displacement similar to that observed for in vivo cardiac-induced brain tissue.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Movimento (Física) , Imagens de Fantasmas
8.
J Magn Reson Imaging ; 53(1): 118-129, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32478915

RESUMO

BACKGROUND: Stack-of-radial multiecho gradient-echo MRI is promising for free-breathing liver R2* quantification and may benefit children. PURPOSE: To validate stack-of-radial MRI with self-gating motion compensation in phantoms, and to evaluate it in children. STUDY TYPE: Prospective. PHANTOMS: Four vials with different R2* driven by a motion stage. SUBJECTS: Sixteen pediatric patients with suspected nonalcoholic fatty liver disease or steatohepatitis (five females, 13 ± 4 years, body mass index 29.2 ± 8.6 kg/m2 ). FIELD STRENGTH/SEQUENCES: Stack-of-radial, and 2D and 3D Cartesian multiecho gradient-echo sequences at 3T. ASSESSMENT: Ungated and gated stack-of-radial proton density fat fraction (PDFF) and R2* maps were reconstructed without and with self-gating motion compensation. Stack-of-radial R2* measurements of phantoms without and with motion were validated against reference 2D Cartesian results of phantoms without motion. In subjects, free-breathing stack-of-radial and reference breath-hold 3D Cartesian were acquired. Subject inclusion for statistical analysis and region of interest placement were determined independently by two observers. STATISTICAL TESTS: Phantom results were fitted with a weighted linear model. Demographic differences between excluded and included subjects were tested by multivariate analysis of variance. PDFF and R2* measurements were compared using Bland-Altman analysis. Interobserver agreement was assessed by the intraclass correlation coefficient (ICC). RESULTS: Ungated stack-of-radial R2* inside moving phantom vials showed a significant positive bias of 64.3 s-1 (P < 0.00001), unlike gated results (P > 0.31). Subject inclusion decisions for statistical analysis from two observers were consistent. No significant differences were found between four excluded and 12 included subjects (P = 0.14). Compared to breath-hold Cartesian, ungated and gated free-breathing stack-of-radial exhibited mean R2* differences of 18.5 s-1 and 3.6 s-1 . Mean PDFF differences were 1.1% and 1.0% for ungated and gated measurements, respectively. Interobserver agreement was excellent (ICC for PDFF = 0.99, ICC for R2* = 0.90; P < 0.0003). DATA CONCLUSION: Stack-of-radial MRI with self-gating motion compensation seems to allow free-breathing liver R2* and PDFF quantification in children. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Criança , Feminino , Humanos , Fígado/diagnóstico por imagem , Movimento (Física) , Estudos Prospectivos
9.
Magn Reson Med ; 83(6): 1964-1978, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31682016

RESUMO

PURPOSE: To develop an accurate free-breathing 3D liver R2∗ mapping approach and to evaluate it in vivo. METHODS: A free-breathing multi-echo stack-of-radial sequence was applied in 5 normal subjects and 6 patients at 3 Tesla. Respiratory motion compensation was implemented using the inherent self-gating signal. A breath-hold Cartesian acquisition was the reference standard. Proton density fat fraction and R2∗ were measured and compared between radial and Cartesian methods using Bland-Altman plots. The normal subject results were fitted to a linear mixed model (P < .05 considered significant). RESULTS: Free-breathing stack-of-radial without self-gating exhibited signal attenuation in echo images and artifactually elevated apparent R2∗ values. In the Bland-Altman plots of normal subjects, compared to breath-hold Cartesian, free-breathing stack-of-radial acquisitions of 22, 30, 36, and 44 slices, had mean R2∗ differences of 27.4, 19.4, 10.9, and 14.7 s-1 with 800 radial views, and they had 18.4, 11.9, 9.7, and 27.7 s-1 with 404 views, which were reduced to 0.4, 0.9, -0.2, and -0.7 s-1 and to -1.7, -1.9, -2.1, and 0.5 s-1 with self-gating, respectively. No substantial proton density fat fraction differences were found. The linear mixed model showed free-breathing radial R2∗ results without self-gating were significantly biased by 17.2 s-1 averagely (P = .002), which was eliminated with self-gating (P = .930). Proton density fat fraction results were not different (P > .234). For patients, Bland-Altman plots exhibited mean R2∗ differences of 14.4 and 0.1 s-1 for free-breathing stack-of-radial without self-gating and with self-gating, respectively, but no substantial proton density fat fraction differences. CONCLUSION: The proposed self-gating method corrects the respiratory motion bias and enables accurate free-breathing stack-of-radial quantification of liver R2∗ .


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Movimento (Física)
10.
NMR Biomed ; 33(7): e4297, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32249522

RESUMO

Multi-channel phased receive arrays have been widely adopted for magnetic resonance imaging (MRI) and spectroscopy (MRS). An important step in the use of receive arrays for MRS is the combination of spectra collected from individual coil channels. The goal of this work was to implement an improved strategy termed OpTIMUS (i.e., optimized truncation to integrate multi-channel MRS data using rank-R singular value decomposition) for combining data from individual channels. OpTIMUS relies on spectral windowing coupled with a rank-R decomposition to calculate the optimal coil channel weights. MRS data acquired from a brain spectroscopy phantom and 11 healthy volunteers were first processed using a whitening transformation to remove correlated noise. Whitened spectra were then iteratively windowed or truncated, followed by a rank-R singular value decomposition (SVD) to empirically determine the coil channel weights. Spectra combined using the vendor-supplied method, signal/noise2 weighting, previously reported whitened SVD (rank-1), and OpTIMUS were evaluated using the signal-to-noise ratio (SNR). Significant increases in SNR ranging from 6% to 33% (P ≤ 0.05) were observed for brain MRS data combined with OpTIMUS compared with the three other combination algorithms. The assumption that a rank-1 SVD maximizes SNR was tested empirically, and a higher rank-R decomposition, combined with spectral windowing prior to SVD, resulted in increased SNR.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Metaboloma , Razão Sinal-Ruído , Adulto Jovem
11.
Radiology ; 290(2): 329-337, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30457480

RESUMO

Purpose To investigate the prognostic value of circumferential left ventricular (LV) strain measured by using cardiac MRI for prediction of major adverse cardiac events (MACE) following an acute ST-segment-elevation myocardial infarction (STEMI). Materials and Methods Participants with acute STEMI were prospectively enrolled from May 11, 2011, to November 22, 2012. Cardiac MRI was performed at 1.5 T during the index hospitalization. Displacement encoding with stimulated echoes (DENSE) and feature tracking of cine cardiac MRI was used to assess circumferential LV strain. MACE that occurred after discharge were independently assessed by cardiologists blinded to the baseline observations. Results A total of 259 participants (mean age, 58 years ± 11 [standard deviation]; 198 men [mean age, 58 years ± 11] and 61 women [mean age, 58 years ± 12]) underwent cardiac MRI 2.2 days ± 1.9 after STEMI. Average infarct size was 18% ± 13 of LV mass and circumferential strain was -13% ± 3 (DENSE method) and -24% ± 7 (feature- tracking method). Fifty-one percent (131 of 259 participants) had presence of microvascular obstruction. During a median follow-up period of 4 years, 8% (21 of 259) experienced MACE. Area under the curve (AUC) for DENSE was different from that of feature tracking (AUC, 0.76 vs 0.62; P = .03). AUC for DENSE was similar to that of initial infarct size (P = .06) and extent of microvascular obstruction (P = .08). DENSE-derived strain provided incremental prognostic benefit over infarct size for prediction of MACE (hazard ratio, 1.3; P < .01). Conclusion Circumferential strain has independent prognostic importance in study participants with acute ST-segment-elevation myocardial infarction. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Kramer in this issue.


Assuntos
Cardiopatias , Ventrículos do Coração , Infarto do Miocárdio com Supradesnível do Segmento ST , Idoso , Feminino , Cardiopatias/epidemiologia , Cardiopatias/etiologia , Cardiopatias/mortalidade , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem
12.
Magn Reson Med ; 81(3): 1755-1768, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30298595

RESUMO

PURPOSE: To study a multiband multi-echo EPI (M2-EPI) sequence for dynamic susceptibility contrast (DSC) perfusion imaging with leakage correction and vascular permeability measurements, and to evaluate the benefits of increased temporal resolution provided by this acquisition strategy on the accuracy of perfusion and permeability estimations. METHODS: A novel M2-EPI sequence was developed, and a pharmacokinetic model accounting for contrast agent extravasation was used to produce perfusion maps and additional vascular permeability maps. The advantage of M2-EPI for DSC perfusion imaging was demonstrated in vivo in 5 patients with brain tumors, and numerical simulations were performed to evaluate the advantage of improved temporal resolution afforded by the technique. RESULTS: In contrast to underestimations of cerebral blood volume (CBV) in tumors using the single-echo acquisition strategy, M2-EPI provided more plausible estimates of CBV. A quantitative evaluation showed higher estimated values of CBV and mean transit time in tumor tissues using M2-EPI (CBV: 3.08 ± 0.78 mL/100 g versus 1.56 ± 1.38 mL/100 g [P = .006]; mean transit time: 4.94 ± 1.17 seconds versus 1.83 ± 2.06 seconds [P = 0.033]). Numerical simulations showed that higher temporal resolution provided by M2-EPI was associated with more accurate estimates of cerebral blood flow, CBV, and permeability parameters. CONCLUSION: The novel M2-EPI acquisition strategy for DSC imaging facilitates leakage-corrected perfusion measurements with additional permeability assessments and more accurate estimates of perfusion/permeability parameters, and may be used as a quantitative tool for the diagnosis, prognosis, and treatment monitoring of brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Encéfalo/diagnóstico por imagem , Meios de Contraste/química , Imagem Ecoplanar/métodos , Idoso , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Volume Sanguíneo Cerebral , Circulação Cerebrovascular , Feminino , Glioblastoma/diagnóstico por imagem , Gliossarcoma/diagnóstico por imagem , Humanos , Linfoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Metástase Neoplásica , Perfusão , Permeabilidade , Prognóstico
13.
Magn Reson Med ; 81(4): 2374-2384, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30488979

RESUMO

PURPOSE: To develop and evaluate a multishot diffusion-prepared (DP) magnitude-stabilized balanced steady-state free precession (bSSFP) diffusion imaging sequence with improved geometric fidelity. METHODS: A signal spoiler (magnitude stabilizer; MS) was implemented in a DP-bSSFP diffusion sequence. Effects of magnitude stabilizers with respect to phase errors were simulated using Bloch simulation. Phantom study was conducted to compare the apparent diffusion coefficient (ADC) accuracy and geometric reliability, quantified using target registration error (TRE), with diffusion-weighted single-shot echo-planar imaging (DW-ssEPI). Six volunteers were recruited. DW-ssEPI, DP-bSSFP with and without ECG triggering, and DP-MS-bSSFP with and without ECG triggering were acquired 10 times with b = 500 s/mm2 in a single-shot manner to evaluate magnitude variability. Diffusion trace images and diffusion tensor images were acquired using a 4-shot DP-MS-bSSFP. RESULTS: Simulation showed that the DP-MS-bSSFP approach is insensitive to phase errors. The DP-MS-bSSFP approach had satisfactory ADC accuracy on the phantom with <5% difference with DW-ssEPI. The mean/max TRE for DW-ssEPI was 2.31/4.29 mm and was 0.51/1.20 mm for DP-MS-bSSFP. In the repeated single-shot study, DP-bSSFP without ECG triggering had severe signal void artifacts and exhibited a nonrepeatable pattern, which can be partially mitigated by ECG triggering. Adding the MS provided stable signal magnitude across all repetitions. High-quality ADC maps and color-coded fractional anisotropy maps were generated using the 4-shot DP-MS-bSSFP. The mean/max TRE was 2.89/10.80 mm for DW-ssEPI and 0.59/1.69 mm for DP-MS-bSSFP. Good agreements of white matter ADC, cerebrospinal fluid ADC, and white matter fractional anisotropy value were observed between DP-MS-bSSFP and DW-ssEPI. CONCLUSION: The proposed DP-MS-bSSFP approach provided high-quality diffusion-weighted and diffusion-tensor images with minimal geometric distortion.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Eletrocardiografia , Substância Branca/diagnóstico por imagem , Anisotropia , Artefatos , Simulação por Computador , Imagem Ecoplanar/métodos , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Teóricos , Imagens de Fantasmas , Reprodutibilidade dos Testes
14.
MAGMA ; 32(3): 317-329, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30694416

RESUMO

OBJECTIVE: Develop an accelerated cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance (CMR) sequence to enable clinically feasible myocardial strain evaluation in patients with dilated cardiomyopathy (DCM). MATERIALS AND METHODS: A spiral cine DENSE sequence was modified by limiting the field of view in two dimensions using in-plane slice-selective pulses in the stimulated echo. This reduced breath hold duration from 20RR to 14RR intervals. Following phantom and pilot studies, the feasibility of the sequence to assess peak radial, circumferential, and longitudinal strain was tested in control subjects (n = 18) and then applied in DCM patients (n = 29). RESULTS: DENSE acquisition was possible in all participants. Elements of the data were not analysable in 1 control (6%) and 4 DCM r(14%) subjects due to off-resonance or susceptibility artefacts and low signal-to-noise ratio. Peak radial, circumferential, short-axis contour strain and longitudinal strain was reduced in DCM patients (p < 0.001 vs. controls) and strain measurements correlated with left ventricular ejection fraction (with circumferential strain r = - 0.79, p < 0.0001; with vertical long-axis strain r = - 0.76, p < 0.0001). All strain measurements had good inter-observer agreement (ICC > 0.80), except peak radial strain. DISCUSSION: We demonstrate the feasibility of CMR strain assessment in healthy controls and DCM patients using an accelerated cine DENSE technique. This may facilitate integration of strain assessment into routine CMR studies.


Assuntos
Cardiomiopatia Dilatada/diagnóstico , Imagem Cinética por Ressonância Magnética , Miocárdio/patologia , Adulto , Idoso , Suspensão da Respiração , Estudos de Casos e Controles , Estudos de Coortes , Simulação por Computador , Estudos de Viabilidade , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Contração Miocárdica , Variações Dependentes do Observador , Imagens de Fantasmas , Projetos Piloto , Reprodutibilidade dos Testes , Razão Sinal-Ruído
15.
J Biomech Eng ; 141(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029261

RESUMO

Regional tissue mechanics play a fundamental role in the patient-specific function and remodeling of the cardiovascular system. Nevertheless, regional in vivo assessments of aortic kinematics remain lacking due to the challenge of imaging the thin aortic wall. Herein, we present a novel application of displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) to quantify the regional displacement and circumferential Green strain of the thoracic and abdominal aorta. Two-dimensional (2D) spiral cine DENSE and steady-state free procession (SSFP) cine images were acquired at 3T at either the infrarenal abdominal aorta (IAA), descending thoracic aorta (DTA), or distal aortic arch (DAA) in a pilot study of six healthy volunteers (22-59 y.o., 4 females). DENSE data were processed with multiple custom noise reduction techniques including time-smoothing, displacement vector smoothing, sectorized spatial smoothing, and reference point averaging to calculate circumferential Green strain across 16 equispaced sectors around the aorta. Each volunteer was scanned twice to evaluate interstudy repeatability. Circumferential Green strain was heterogeneously distributed in all volunteers and locations. The mean spatial heterogeneity index (standard deviation of all sector values divided by the mean strain) was 0.37 in the IAA, 0.28 in the DTA, and 0.59 in the DAA. Mean (homogenized) peak strain by DENSE for each cross section was consistent with the homogenized linearized strain estimated from SSFP cine. The mean difference in peak strain across all sectors following repeat imaging was -0.1±2.3%, with a mean absolute difference of 1.7%. Aortic cine DENSE MRI is a viable noninvasive technique for quantifying heterogeneous regional aortic wall strain and has significant potential to improve patient-specific clinical assessments of numerous aortopathies, as well as to provide the lacking spatiotemporal data required to refine patient-specific computational models of aortic growth and remodeling.

16.
Magn Reson Med ; 79(4): 2205-2215, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28734017

RESUMO

PURPOSE: To evaluate the importance of strain-correcting stimulated echo acquisition mode echo-planar imaging cardiac diffusion tensor imaging. METHODS: Healthy pigs (n = 11) were successfully scanned with a 3D cine displacement-encoded imaging with stimulated echoes and a monopolar-stimulated echo-planar imaging diffusion tensor imaging sequence at 3 T during diastasis, peak systole, and strain sweet spots in a midventricular short-axis slice. The same diffusion tensor imaging sequence was repeated ex vivo after arresting the hearts in either a relaxed (KCl-induced) or contracted (BaCl2 -induced) state. The displacement-encoded imaging with stimulated echoes data were used to strain-correct the in vivo cardiac diffusion tensor imaging in diastole and systole. The orientation of the primary (helix angles) and secondary (E2A) diffusion eigenvectors was compared with and without strain correction and to the strain-free ex vivo data. RESULTS: Strain correction reduces systolic E2A significantly when compared without strain correction and ex vivo (median absolute E2A = 34.3° versus E2A = 57.1° (P = 0.01), E2A = 60.5° (P = 0.006), respectively). The systolic distribution of E2A without strain correction is closer to the contracted ex vivo distribution than with strain correction, root mean square deviation of 0.027 versus 0.038. CONCLUSIONS: The current strain-correction model amplifies the contribution of microscopic strain to diffusion resulting in an overcorrection of E2A. Results show that a new model that considers cellular rearrangement is required. Magn Reson Med 79:2205-2215, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Tensor de Difusão , Coração/diagnóstico por imagem , Algoritmos , Animais , Simulação por Computador , Diástole , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Respiração , Respiração Artificial , Software , Estresse Mecânico , Suínos , Sístole
17.
J Magn Reson Imaging ; 47(2): 477-486, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28556294

RESUMO

PURPOSE: To develop a Shared K-space (SharK) magnetic resonance imaging (MRI) sequence that combines angiographic and late gadolinium enhancement (LGE) acquisitions to improve atrial wall segmentation and scar identification, and to develop a novel visualization method that quantifies scar encirclement of pulmonary veins postablation treatment for atrial fibrillation. MATERIALS AND METHODS: A SharK sequence was developed and used at 3T to image the left atrium in 11 patients postcryoballoon ablation. The effects of sharing k-space between the angiographic and LGE acquisitions on the accuracy of scar were assessed. The left atrial wall was segmented and points about each pulmonary vein (PV) ostia were projected onto a bullseye to quantitatively compare PV encirclement. The parameters used to quantify encirclement were varied to perform a sensitivity analysis. RESULTS: Compared to using a complete set of k-space, total atrial scar differences were significant only when sharing >75% k-space (P = 0.014), and 90% sensitivity and specificity for identifying scar was achieved when sharing 50% k-space. In patients, the right PVs showed more intersubject variance in encirclement compared to the left PVs. A 100° anteroinferior portion of the left PVs was always encircled, while the superior segments of both right PVs was ablated in only 6/11 patients. CONCLUSION: A SharK sequence was developed to combine angiographic and LGE imaging for atrial wall segmentation and scar identification. The PV bullseye quantifies and localizes encirclement about the PVs. The left PVs showed a higher amount of scar encirclement and less variability compared to the right PVs. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:477-486.


Assuntos
Fibrilação Atrial/diagnóstico por imagem , Meios de Contraste , Gadolínio , Aumento da Imagem/métodos , Angiografia por Ressonância Magnética/métodos , Veias Pulmonares/diagnóstico por imagem , Fibrilação Atrial/patologia , Feminino , Átrios do Coração/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
J Biomech Eng ; 140(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003253

RESUMO

Intrinsic cardiac-induced deformation of brain tissue is thought to be important in the pathophysiology of various neurological disorders. In this study, we evaluated the feasibility of utilizing displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) to quantify two-dimensional (2D) neural tissue strain using cardiac-driven brain pulsations. We examined eight adult healthy volunteers with an electrocardiogram-gated spiral DENSE sequence performed at the midsagittal plane on a 3 Tesla MRI scanner. Displacement, pixel-wise trajectories, and principal strains were determined in seven regions of interest (ROI): the brain stem, cerebellum, corpus callosum, and four cerebral lobes. Quantification of small neural tissue motion and strain along with their spatial and temporal variations in different brain regions was found to be feasible using DENSE. The medial and inferior brain structures (brain stem, cerebellum, and corpus callosum) had significantly larger motion and strain compared to structures located more peripherally. The brain stem had the largest peak mean displacement (PMD) (187 ± 50 µm, mean ± SD). The largest mean principal strains in compression and extension were observed in the brain stem (0.38 ± 0.08%) and the corpus callosum (0.37 ± 0.08%), respectively. Measured values in percent strain were altered by as much as 0.1 between repeated scans. This study showed that DENSE can quantify regional variations in brain tissue motion and strain and has the potential to be utilized as a tool to evaluate the changes in brain tissue dynamics resulting from alterations in biomechanical stresses and tissue properties.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estresse Mecânico , Adulto , Fenômenos Biomecânicos , Encéfalo/citologia , Estudos de Viabilidade , Feminino , Humanos , Masculino
19.
J Magn Reson Imaging ; 45(3): 710-721, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27474158

RESUMO

PURPOSE: To examine the effects of repetition time (TR) on metabolite concentration measurements in the human brain in 1 H magnetic resonance spectroscopy at 3 Tesla (T). MATERIALS AND METHODS: Spectra were acquired from the posterior cingulate of five healthy adults at repetition times of 1.5 s, 3.0 s, 4.0 s, 6.0 s, and 8.0 s on a 3T MRI system. Relaxation data were also acquired for the water signal in the voxel of interest to separate tissue water and cerebrospinal fluid signal contributions. All data were quantified relative to total creatine and relative to the tissue water signal. RESULTS: On average, the variance for absolute metabolite concentrations was smaller than that of ratio concentrations (P = 0.003). Metabolite ratio concentrations calculated from a short TR of 1.5 s significantly differed (P < 0.05) from their "true" ratios, i.e., ratios corrected for T1 -weighting. In comparison, absolute metabolite concentrations exhibited significant differences (P < 0.05) up to a 4-s TR. CONCLUSION: To minimize potential TR-dependent concentration differences at 3T, a minimum TR of 2.5 s is suggested for ratio concentration measurements, and a 5-s TR for absolute concentrations. When possible, preference should be to perform absolute concentration measurements. LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017;45:710-721.


Assuntos
Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
20.
J Magn Reson Imaging ; 46(3): 793-800, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28225576

RESUMO

PURPOSE: To prospectively evaluate a new 3D-multiecho-Dixon (3D-ME-Dixon) sequence for the quantification of hepatic iron and fat in a clinical setting. MATERIALS AND METHODS: In all, 120 patients underwent 1.5T magnetic resonance imaging of the liver between December 2013 and June 2015 including the following three sequences: 3D-ME-Dixon with inline calculation of R2* and proton-density fat-fraction (PDFF) maps, single-voxel-spectroscopy (SVS), 2D multigradient-echo sequence (2D-ME-GRE). SVS and 2D-ME-GRE were used as reference for PDFF and R2*, respectively. R2*- and PDFF-values from 3D-ME-Dixon were compared with those of the reference. Linear regression analysis, Bland-Altman plots, and agreement parameters were calculated. RESULTS: In total, 103 patients were finally included (87 men and 16 women; mean age, 50.51 years); 17/120 were excluded due to fat/water-swaps or R2*-values exceeding the constraint of 400 1/s for 3D-ME-Dixon. A strong correlation (r = 0.992, P < 0.001) between R2* of 3D-ME-Dixon and the reference 2D-ME-GRE was found. Bland-Altman analysis revealed systematically lower values for 3D-ME-Dixon (16.499%). Using an adapted threshold of 57 1/s, 3D-ME-Dixon obtained a positive/negative percentage agreement (PPA/NPA) of 84.4%/91.4% for detecting hepatic iron overload. For hepatic fat the correlation between 3D-ME-Dixon and the reference SVS was strong (r = 0.957, P < 0.001); PPA/NPA was 88.3%/91.4%. CONCLUSION: The 3D-ME-Dixon sequence is a valuable tool for the evaluation of hepatic iron and fat in a clinical setting. Fat/water-swaps remain a drawback requiring improvements to the implementation and making it necessary to have proven conventional sequences at hand in case of an eventual occurrence. LEVEL OF EVIDENCE: 1. Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:793-800.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Fígado Gorduroso/diagnóstico por imagem , Imageamento Tridimensional/métodos , Ferro , Fígado/diagnóstico por imagem , Fígado/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA