Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(1): e2305030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649169

RESUMO

Vanadium-based oxides have attracted much attention because of their rich valences and adjustable structures. The high theoretical specific capacity contributed by the two-electron-transfer process (V5+ /V3+ ) makes it an ideal cathode material for aqueous zinc-ion batteries. However, slow diffusion kinetics and poor structural stability limit the application of vanadium-based oxides. Herein, a strategy for intercalating organic matter between vanadium-based oxide layers is proposed to attain high rate performance and long cycling life. The V3 O7 ·H2 O is synthesized in situ on the carbon cloth to form an open porous structure, which provides sufficient contact areas with electrolyte and facilitates zinc ion transport. On the molecular level, the added organic matter p-aminophenol (pAP) not only plays a supporting role in the V3 O7 ·H2 O layer, but also shows a regulatory effect on the V5+ /V4+ redox process due to the reducing functional group on pAP. The novel composite electrode with porous structure exhibits outstanding reversible specific capacity (386.7 mAh g-1 , 0.1 A g-1 ) at a high load of 6.5 mg cm-2 , and superior capacity retention of 80% at 3 A g-1 for 2100 cycles.

2.
Angew Chem Int Ed Engl ; 63(11): e202318928, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38189767

RESUMO

The Zn//V2 O5 system not only faces the incontrollable growth of zinc (Zn) dendrites, but also withstands the cross-talk effect of by-products produced from the cathode side to the Zn anode, inducing interelectrode talk and aggravating battery failure. To tackle these issues, we construct a rapid Zn2+ -conducting hydrogel electrolyte (R-ZSO) to achieve Zn deposition modulation and side reaction inhibition in Zn//V2 O5 full cells. The polymer matrix and BN exhibit a robust anchoring effect on SO4 2- , accelerating Zn2+ migration and enabling dense Zn deposition behavior. Therefore, the Zn//Zn symmetric cells based on the R-ZSO electrolyte can operate stably for more than 1500 h, which is six times higher than that of cells employing the blank electrolyte. More importantly, the R-ZSO hydrogel electrolyte effectively decouples the cross-talk effects, thus breaking the infinite loop of side reactions. As a result, the Zn//V2 O5 cells using this modified hydrogel electrolyte demonstrate stable operation over 1,000 cycles, with a capacity loss rate of only 0.028 % per cycle. Our study provides a promising gel chemistry, which offers a valuable guide for the construction of high-performance and multifunctional aqueous Zn-ion batteries.

3.
Angew Chem Int Ed Engl ; 62(16): e202301772, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36807435

RESUMO

Lithium-oxygen batteries (LOBs) are well known for their high energy density. However, their reversibility and rate performance are challenged due to the sluggish oxygen reduction/evolution reactions (ORR/OER) kinetics, serious side reactions and uncontrollable Li dendrite growth. The electrolyte plays a key role in transport of Li+ and reactive oxygen species in LOBs. Here, we tailored a dilute electrolyte by screening suitable crown ether additives to promote lithium salt dissociation and Li+ solvation through electrostatic interaction. The electrolyte containing 100 mM 18-crown-6 ether (100-18C6) exhibits enhanced electrochemical stability and triggers a solution-mediated Li2 O2 growth pathway in LOBs, showing high discharge capacity of 10 828.8 mAh gcarbon -1 . Moreover, optimized electrode/electrolyte interfaces promote ORR/OER kinetics on cathode and achieve dendrite-free Li anode, which enhances the cycle life. This work casts new lights on the design of low-cost dilute electrolytes for high performance LOBs.

4.
Angew Chem Int Ed Engl ; 62(38): e202307083, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37489757

RESUMO

Dual-ion batteries (DIBs) is a promising technology for large-scale energy storage. However, it is still questionable how material structures affect the anion storage behavior. In this paper, we synthesis graphite with an ultra-large interlayer distance and heteroatomic doping to systematically investigate the combined effects on DIBs. The large interlayer distance of 0.51 nm provides more space for anion storage, while the doping of the heteroatoms reduces the energy barriers for anion intercalation and migration and enhances rapid ionic storage at interfaces simultaneously. Based on the synergistic effects, the DIBs composed of carbon cathode and lithium anode afford ultra-high capacity of 240 mAh g-1 at current density of 100 mA g-1 . Dual-carbon batteries (DCBs) using the graphite as both of cathode and anode steadily cycle 2400 times at current density of 1 A g-1 . Hence, this work provides a reference to the strategy of material designs of DIBs and DCBs.

5.
Angew Chem Int Ed Engl ; 61(49): e202212231, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36239266

RESUMO

Due to the excellent specific capacity and high working voltage, manganese oxide (MnO2 ) has attracted considerable attention for aqueous zinc-ion batteries (AZIBs). However, the irreversible structural collapse and sluggish ionic diffusion lead to poor rate capability and inferior lifespan. Herein, we proposed a novel organic/inorganic hybrid cathode of carbon-based poly(4,4'-oxybisbenzenamine)/MnO2 (denoted as C@PODA/MnO2 ) for AZIBs. Various in/ex situ analyses and theoretical calculations prove that PODA chains with C=N groups can provide a more active surface/interface for ion/electron mobility and zinc ion storage in the hybrid cathode. More importantly, newly formed Mn-N interfacial bonds can effectively promote ion diffusion and prevent Mn atoms dissolution, enhancing redox kinetics and structural integrity of MnO2 . Accordingly, C@PODA/MnO2 cathode exhibits high capacity (321 mAh g-1 or 1.7 mAh cm-2 at 0.1 A g-1 ), superior rate performance (88 mAh g-1 at 10 A g-1 ) and excellent cycling stability over 2000 cycles. Hence, rational interfacial designs shed light on the development of organic/inorganic cathodes for advanced AZIBs.

6.
Nanomicro Lett ; 16(1): 164, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546948

RESUMO

Aqueous Zn2+-ion batteries (AZIBs), recognized for their high security, reliability, and cost efficiency, have garnered considerable attention. However, the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application. In this study, we introduced a ubiquitous biomolecule of phenylalanine (Phe) into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode. Leveraging its exceptional nucleophilic characteristics, Phe molecules tend to coordinate with Zn2+ ions for optimizing the solvation environment. Simultaneously, the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy, enabling the construction of a multifunctional protective interphase. The hydrophobic benzene ring ligands act as cleaners for repelling H2O molecules, while the hydrophilic hydroxyl and carboxyl groups attract Zn2+ ions for homogenizing Zn2+ flux. Moreover, the preferential reduction of Phe molecules prior to H2O facilitates the in situ formation of an organic-inorganic hybrid solid electrolyte interphase, enhancing the interfacial stability of the Zn anode. Consequently, Zn||Zn cells display improved reversibility, achieving an extended cycle life of 5250 h. Additionally, Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3% capacity after 300 cycles, demonstrating substantial potential in advancing the commercialization of AZIBs.

7.
Adv Mater ; 36(4): e2303710, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37571811

RESUMO

Lithium (Li) metal is considered as one of the most promising candidates of anode material for high-specific-energy batteries, while irreversible chemical reactions always occur on the Li surface to continuously consume active Li, electrolyte. Solid electrolyte interphase (SEI) layer has been regarded as the key component in protecting Li metal anode. Herein, a controllable dual-layered SEI for Li metal anode in a scalable, low-loss manner is constructed. The SEI is self-induced by the predeposited LiAlO2 (LAO) layer during the initial cycles, in which the outer organic layer is produced due to the electrons tunneling through LAO, resulting in the reduction of electrolyte. The robust inner LAO layer can promote uniform Li deposition owing to its favorable mechanical strength and ionic conductivity, and the outer organic layer can further improve the stability of SEI. Benefiting from the remarkable effects of this dual-layered SEI, enhanced electrochemical performance of the LAO-Li anode is achieved. Additionally, a large-size LAO-Li sample can be easily obtained, and the preparation of the modified Li metal anode shows huge potential for large-scale production. This work highlights the tremendous potential of this self-induced dual-layered SEI for the commercialization of Li metal anode.

8.
Sci Bull (Beijing) ; 68(19): 2170-2179, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633831

RESUMO

Aqueous Zn2+ ion batteries present notable advantages, including high abundance, low toxicity, and intrinsic nonflammability. However, they exhibit severe irreversibility due to uncontrolled dendrite growth and corrosion reactions, which limit their practical applications. Inspired by their distinct molecular recognition characteristics, supramolecular crown ethers featuring interior cavity sizes identical to the diameter of Zn2+ ions were screened as macrocyclic hosts to optimize the Zn2+ coordination environment, facilitating the suppression of the reactivity of H2O molecules and inducing the in-situ formation of organic-inorganic hybrid dual-protective interphase. The in-situ assembled interphase confers the system with an "ion-sieving" effect to repel H2O molecules and facilitate rapid Zn2+ transport, enabling the suppression of side reactions and uniform deposition of Zn2+ ions. Consequently, we were able to achieve dendrite-free Zn2+ plating/stripping at 98.4% Coulombic efficiency for approximately 300 cycles in Zn||Cu cell, steady charge-discharge for 1360 h in Zn||Zn symmetric cell, and improved cyclability of 70% retention for 200 cycles in Zn||LMO full cell, outlining a promising strategy to challenge lithium-ion batteries in low-cost, and large-scale applications.

9.
Nanomicro Lett ; 15(1): 171, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410259

RESUMO

Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has not yet attracted enough attention from researchers to our knowledge. Here, we propose that thermodynamic nucleation overpotential of Zn deposition can be boosted through complexing agent and select sodium L-tartrate (Na-L) as example. Theoretical and experimental characterization reveals L-tartrate anion can partially replace H2O in the solvation sheath of Zn2+, increasing de-solvation energy. Concurrently, the Na+ could absorb on the surface of Zn anode preferentially to inhibit the deposition of Zn2+ aggregation. In consequence, the overpotential of Zn deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 20 mAh cm-2. Zn-LiMn2O4 full cell with Na-L additive delivers improved stability than that with blank electrolyte. This study also provides insight into the regulation of nucleation overpotential to achieve homogeneous Zn deposition.

10.
ACS Nano ; 17(12): 11946-11956, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37318040

RESUMO

Dendrite growth and electrode/electrolyte interface side reactions in aqueous zinc-ion batteries (AZIBs) not only impair the battery lifetime but also pose serious safety concerns for the battery system, hindering its application in large-scale energy storage systems. Herein, by introducing positively charged chlorinated graphene quantum dot (Cl-GQD) additives into the electrolyte, a bifunctional dynamic adaptive interphase is proposed to achieve Zn deposition regulation and side reaction suppression in AZIBs. During the charging process, the positively charged Cl-GQDs are adsorbed onto the Zn surface, acting as an electrostatic shield layer that facilitates smooth Zn deposition. In addition, the relative hydrophobic properties of chlorinated groups also build a hydrophobic protective interface for the Zn anode, mitigating the corrosion of the Zn anode by water molecules. More importantly, the Cl-GQDs are not consumed throughout the cell operation and exhibit a dynamic reconfiguration behavior, which ensures the stability and sustainability of this dynamic adaptive interphase. Consequently, the cells mediated by the dynamic adaptive interphase enable dendrite-free Zn plating/stripping for more than 2000 h. Particularly, even at 45.5% depth of discharge, the modified Zn//LiMn2O4 hybrid cells still retain 86% capacity retention after 100 cycles, confirming the feasibility of this simple approach for application with limited Zn sources.

11.
Adv Sci (Weinh) ; 10(36): e2306656, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38041501

RESUMO

The practical application of AZIBs is hindered by problems such as dendrites and hydrogen evolution reactions caused by the thermodynamic instability of Zinc (Zn) metal. Modification of the Zn surface through interface engineering can effectively solve the above problems. Here, sulfonate-derivatized graphene-boronene nanosheets (G&B-S) composite interfacial layer is prepared to modulate the Zn plating/stripping and mitigates the side reactions with electrolyte through a simple and green electroplating method. Thanks to the electronegativity of the sulfonate groups, the G&B-S interface promotes a dendrite-free deposition behavior through a fast desolvation process and a uniform interfacial electric field mitigating the tip effect. Theoretical calculations and QCM-D experiments confirmed the fast dynamic mechanism and excellent mechanical properties of the G&B-S interfacial layer. By coupling the dynamics-mechanics action, the G&B-S@Zn symmetric battery is cycled for a long-term of 1900 h at a high current density of 5 mA cm-2 , with a low overpotential of ≈30 mV. Furthermore, when coupled with the LMO cathode, the LMO//G&B-S@Zn cell also exhibits excellent performance, indicating the durability of the G&B-S@Zn anode. Accordingly, this novel multifunctional interfacial layer offers a promising approach to significantly enhance the electrochemical performance of AZIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA