Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 212: 77-87, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29428656

RESUMO

Enhancing the contaminant adsorption capacity is a key factor affecting utilization of carbon-based adsorbents in wastewater treatment and encouraging development of biomass thermo-disposal. In this study, a novel MgO hybrid sponge-like carbonaceous composite (HSC) derived from sugarcane leafy trash was prepared through an integrated adsorption-pyrolysis method. The resulted HSC composite was characterized and employed as adsorbent for the removal of negatively charged arsenate (As(V)), positively charged Pb(II), and the organic pollutant methylene blue (MB) from aqueous solutions in batch experiments. The effects of solution pH, contact time, initial concentration, temperature, and ionic strength on As(V), Pb(II) and MB adsorption were investigated. HSC was composed of nano-size MgO flakes and nanotube-like carbon sponge. Hybridization significantly improved As(V), Pb(II) and methylene blue (MB) adsorption when compared with the material without hybridization. The maximum As(V), Pb(II) and MB adsorption capacities obtained from Langmuir model were 157 mg/g, 103 mg/g and 297 mg/g, respectively. As(V) adsorption onto HSC was best fit by the pseudo-second-order model, and Pb(II) and MB with the intraparticle diffusion model. Increased temperature and ionic strength decreased Pb(II) and MB adsorption onto HSC more than As(V). Further FT-IR, XRD and XPS analysis demonstrated that the removal of As(V) by HSC was mainly dominated by surface deposition of MgHAsO4 and Mg(H2AsO4)2 crystals on the HSC composite, while carbon π-π* transition and carbon π-electron played key roles in Pb(II) and MB adsorption. The interaction of Pb(II) with carbon matrix carboxylate was also evident. Overall, MgO hybridization improves the preparation of the nanotube-like carbon sponge composite and provides a potential agricultual residue-based adsorbent for As(V), Pb(II) and MB removal.


Assuntos
Arsênio/isolamento & purificação , Chumbo/isolamento & purificação , Azul de Metileno/isolamento & purificação , Poluentes Químicos da Água , Adsorção , Arsênio/química , Concentração de Íons de Hidrogênio , Cinética , Chumbo/química , Azul de Metileno/química , Saccharum , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Environ Pollut ; 244: 627-635, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30384068

RESUMO

Biochar has been used to remove heavy metals from aqueous solutions. In this study, a sulfurized wood biochar (SWB) by direct impregnation with elemental sulfur was produced and evaluated along with pristine wood biochar (WB) for adsorption characteristics and mechanism of mercury. Mercury adsorption by WB and SWB was well described by Langmuir model and pseudo second order model and the maximum adsorption capacities of WB and SWB were 57.8 and 107.5 mg g-1, respectively. Intraparticle diffusion model showed that mercury adsorption was fast due to boundary layer and slow adsorption due to diffusion into biochar pores. Although, mercury adsorption by both WB and SWB was predominantly influenced by the pH, temperature, salt concentration, and biochar dosage, the SWB showed a relatively stable mercury adsorption compared to WB under different conditions, suggesting the strong affinity of SWB for mercury. The XPS analysis showed different adsorption mechanisms of mercury between WB and SWB. In particular, mercury adsorption in WB was due to Hg-Cπ bond formation and interaction with carboxyl and hydroxyl groups, whereas in SWB it is primarily due to mercury interaction with C-SOx-C and thiophenic groups in addition to Hg-Cπ bond formation and interaction with carboxyl groups. The SEM-EDS mapping also demonstrated that mercury in SWB was related to carbon, oxygen and sulfur. Overall, the sulfurized biochar was effective for removing mercury from aqueous solution, and its direct production through pyrolysis with elemental sulfur impregnation of wood chips could make it an economic option as absorbent for treating mercury-rich wastewater.


Assuntos
Carvão Vegetal/química , Mercúrio/química , Enxofre/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Madeira/química , Adsorção , Carbono/química , Cinética , Metais Pesados/química , Temperatura , Águas Residuárias/análise , Águas Residuárias/química , Água/química
3.
Bioresour Technol ; 273: 335-340, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30448686

RESUMO

This work prepares a novel CeO2-MoS2 hybrid magnetic biochar (CMMB) for the adsorptive removal of Pb(II) and humate from aqueous solution. The CMMB was evaluated against magnetic biochar (MB). The results showed that CMMB exhibited strong magnetic separation ability. Hybridization of CMMB greatly improved Pb(II) and humate removal compared to MB, with >99% Pb(II) and humate removed within 6 h. Pb(II) and humate removal capacities of CMMB were 263.6 mg/g and 218.0 mg/g, respectively, with negligible influence of ion strength in the range of 0-0.1 mol/L NaNO3. Pb(II) removal mechanism involved predominately with electrostatic attraction, Cπ-Pb(II) bond interaction, and surface adsorption and complexation combined processes; while pore-filling, partition effect and π-π interaction contributed to the adsorption of humate. Overall, the introduction of graphene-like MoS2 materials into biochar benefits both of the biomass resources recovery and environmental protection.


Assuntos
Cério/química , Carvão Vegetal/química , Dissulfetos/química , Chumbo/química , Molibdênio/química , Adsorção , Biomassa , Substâncias Húmicas , Chumbo/isolamento & purificação , Magnetismo
4.
Chemosphere ; 208: 408-416, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29885507

RESUMO

Metal oxide-Carbon composites have aroused great interesting towards specific anionic contaminants removal from the polluted environment. In this study, aiming at removing toxic chromate ion [Cr(VI)] from aqueous solutions, a novel approach was developed to produce surface-enhanced MgO-coated biochar adsorbent from sugarcane harvest residue (SHR). It was found that sulfuric acid hydrolysis and MgO-coating both facilitated the removal of Cr(VI) by biochars, and the maximum sorption capacities for the pristine biochar (SHR550), MgO-coated biochar (MgSHR550), and acid-assisted MgO-coated biochar (MgASHR550) that derived from the Langmuir isotherm model were 20.79, 54.64, and 62.89 mg g-1, respectively. Additionally, the Cr(VI) removal was a pseudo-second-order kinetic model controlled process with equilibrium reached within 24 h. The mechanism investigation revealed that Cr(VI) ions was directly sorbed by the MgO-coated biochars via the chemical interaction between MgO and Cr(VI), whereas the sorption-coupled reduction of Cr(VI) to Cr(III) governed the sorption of Cr(VI) on the SHR550. Although the increases of solution pH (>2.0) and KNO3 concentration (>0.05 mol L-1) reduced the Cr(VI) removal by biochars, while there were lower secondary pollution risks in MgO-coated biochar treatments due to the suppressed release of Cr(III) in solutions. This work could provide guidance for the production of efficient biochar for the removal of Cr(VI) from wastewater.


Assuntos
Carvão Vegetal/química , Cromo/isolamento & purificação , Adsorção , Cromatos , Concentração de Íons de Hidrogênio , Cinética , Ácidos Sulfúricos , Águas Residuárias/química , Poluentes Químicos da Água/química
5.
J Colloid Interface Sci ; 525: 143-151, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29704779

RESUMO

The purpose of this study was to investigate the characteristics of crawfish char (CFC) derived at different pyrolysis temperature and to evaluate its adsorption characteristics on phosphate. Phosphate adsorption by CFC occurred rapidly at the beginning of the reaction, and the time to reach equilibrium was dependent on the pyrolysis temperature. Maximum adsorption capacities of phosphate by CFC at different pyrolysis temperatures were high in order of CFC800 (70.9 mg/g) > CFC600 (56.8 mg/g) > CFC400 (47.2 mg/g) ≫ CFC200 (9.5 mg/g) ≈ uncharred crawfish feedstock (CF) (7.1 mg/g). Spectroscopic analyses using SEM-EDS and FTIR showed that the phosphate present in the CFC itself was associated with carbon, while the phosphate adsorbed on the CFC was closely related to calcium. The adsorption of phosphate by CFC is dominantly affected by pH. Phosphate adsorption of CFC600 primarily occurred at acid and neutral pH which is related to dissolved calcium from surface and phosphate hydrolysis product (H2PO4-), while phosphate adsorption of CFC800 mainly took place at alkaline pH, with precipitation mechanism between PO43- and calcium dissolved from free CaO and Ca(OH)2. Overall, CFC derived at pyrolysis temperatures above 400 °C is effective for waste reduction and phosphate treatment in wastewater.

6.
Waste Manag ; 78: 802-810, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32559975

RESUMO

In this study, nutrient properties and carbon sequestration potential of biochars derived from chicken manure (CM) impregnated with mineral salts (calcium chloride, magnesium chloride, ferric chloride) were evaluated. Pretreatment with mineral salts reduced phosphorus (P) availability via the formation of insoluble metal phosphate minerals. Less carbon was lost during the pyrolysis of pretreated CM, and the produced biochars (BCCa, BCMg, and BCFe) were more stable (i.e., reduced C loss during chemical oxidation and less CO2 release during incubation) than pristine biochars. Spectroscopic evidence indicated that enhanced biochar stability via metal salt pretreatment before pyrolysis was related to increased aromatization and enhanced physical protection due to the metal-oxygen interaction, together with the formation of metal mineral phases on biochar surfaces. Moreover, ferric chloride was the optimal additive, as it significantly decreased biochar P leachability and increased carbon sequestration potential.

7.
Sci Total Environ ; 559: 121-129, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27058131

RESUMO

Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution.

8.
Bioresour Technol ; 215: 209-214, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26995322

RESUMO

The present study deals with the preparation of a novel MgO-impregnated magnetic biochar (MMSB) for phosphate recovery from aqueous solution. The MMSB was evaluated against sugarcane harvest residue biochar (SB) and magnetic biochar without Mg (MSB). The results showed that increasing Mg content in MMSB greatly improved the phosphate adsorption compared to SB and MSB, with 20% Mg-impregnated MMSB (20MMSB) recovering more than 99.5% phosphate from aqueous solution. Phosphate adsorption capacity of 20MMSB was 121.25mgP/g at pH 4 and only 37.53% of recovered phosphate was desorbed by 0.01mol/L HCl solutions. XRD and FTIR analysis showed that phosphate sorption mechanisms involved predominately with surface electrostatic attraction and precipitation with impregnated MgO and surface inner-sphere complexation with Fe oxide. The 20MMSB exhibited both maximum phosphate sorption and strong magnetic separation ability. Overall, phosphate-loaded 20MMSB significantly enhanced plant growth and could be used as a potential substitute for phosphate-based fertilizer.


Assuntos
Carvão Vegetal/química , Óxido de Magnésio/química , Fosfatos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Fosfatos/química , Soluções , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA