Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(26): 14667-14675, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32532923

RESUMO

Many natural materials possess built-in structural variation, endowing them with superior performance. However, it is challenging to realize programmable structural variation in self-assembled synthetic materials since self-assembly processes usually generate uniform and ordered structures. Here, we report the formation of asymmetric microribbons composed of directionally self-assembled two-dimensional nanoflakes in a polymeric matrix during three-dimensional direct-ink printing. The printed ribbons with embedded structural variations show site-specific variance in their mechanical properties. Remarkably, the ribbons can spontaneously transform into ultrastretchable springs with controllable helical architecture upon stimulation. Such springs also exhibit superior nanoscale transport behavior as nanofluidic ionic conductors under even ultralarge tensile strains (>1,000%). Furthermore, to show possible real-world uses of such materials, we demonstrate in vivo neural recording and stimulation using such springs in a bullfrog animal model. Thus, such springs can be used as neural electrodes compatible with soft and dynamic biological tissues.


Assuntos
Neuroestimuladores Implantáveis , Microtecnologia/instrumentação , Nanoestruturas , Impressão Tridimensional , Animais , Anuros , Elasticidade , Grafite/química , Íons/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Neurofisiologia/instrumentação , Nervo Isquiático/fisiologia
2.
Cancer Commun (Lond) ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837878

RESUMO

Immunotherapy, particularly with immune checkpoint inhibitors, has significantly transformed cancer treatment. Despite its success, many patients struggle to respond adequately or sustain long-lasting clinical improvement. A growing consensus has emerged that radiotherapy (RT) enhances the response rate and overall efficacy of immunotherapy. Although combining RT and immunotherapy has been extensively investigated in preclinical models and has shown promising results, establishing itself as a dynamic and thriving area of research, clinical evidence for this combination strategy over the past five years has shown both positive and disappointing results, suggesting the need for a more nuanced understanding. This review provides a balanced and updated analysis of the combination of immunotherapy and RT. We summarized the preclinical mechanisms through which RT boosts antitumor immune responses and mainly focused on the outcomes of recently updated clinical trials, including those that may not have met expectations. We investigated the optimization of the therapeutic potential of this combined strategy, including key challenges, such as fractionation and scheduling, lymph node irradiation, and toxicity. Finally, we offered insights into the prospects and challenges associated with the clinical translation of this combination therapy, providing a realistic perspective on the current state of research and potential future directions.

3.
Sci Adv ; 10(6): eadk6856, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335291

RESUMO

Formaldehyde, a known human carcinogen, is a common indoor air pollutant. However, its real-time and selective recognition from interfering gases remains challenging, especially for low-power sensors suffering from noise and baseline drift. We report a fully 3D-printed quantum dot/graphene-based aerogel sensor for highly sensitive and real-time recognition of formaldehyde at room temperature. By optimizing the morphology and doping of printed structures, we achieve a record-high and stable response of 15.23% for 1 part per million formaldehyde and an ultralow detection limit of 8.02 parts per billion consuming only ∼130-microwatt power. On the basis of measured dynamic response snapshots, we also develop intelligent computational algorithms for robust and accurate detection in real time despite simulated substantial noise and baseline drift, hitherto unachievable for room temperature sensors. Our framework in combining materials engineering, structural design, and computational algorithm to capture dynamic response offers unprecedented real-time identification capabilities of formaldehyde and other volatile organic compounds at room temperature.

4.
Nat Commun ; 15(1): 3652, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714661

RESUMO

Materials following Murray's law are of significant interest due to their unique porous structure and optimal mass transfer ability. However, it is challenging to construct such biomimetic hierarchical channels with perfectly cylindrical pores in synthetic systems following the existing theory. Achieving superior mass transport capacity revealed by Murray's law in nanostructured materials has thus far remained out of reach. We propose a Universal Murray's law applicable to a wide range of hierarchical structures, shapes and generalised transfer processes. We experimentally demonstrate optimal flow of various fluids in hierarchically planar and tubular graphene aerogel structures to validate the proposed law. By adjusting the macroscopic pores in such aerogel-based gas sensors, we also show a significantly improved sensor response dynamics. In this work, we provide a solid framework for designing synthetic Murray materials with arbitrarily shaped channels for superior mass transfer capabilities, with future implications in catalysis, sensing and energy applications.

5.
Signal Transduct Target Ther ; 7(1): 95, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332121

RESUMO

The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.


Assuntos
Neoplasias , Receptores Notch , Humanos , Imunoterapia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Receptores Notch/genética , Receptores Notch/metabolismo , Receptores Notch/uso terapêutico , Transdução de Sinais/genética , Microambiente Tumoral/genética
6.
Front Immunol ; 12: 693609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194441

RESUMO

The immune checkpoint blockade therapy has completely transformed cancer treatment modalities because of its unprecedented and durable clinical responses in various cancers. With the increasing use of immune checkpoint blockades in clinical practice, a large number of patients develop acquired resistance. However, the knowledge about acquired resistance to immune checkpoint blockades is limited and poorly summarized. In this review, we clarify the principal elements of acquired resistance to immune checkpoint blockades. The definition of acquired resistance is heterogeneous among groups or societies, but the expert consensus of The Society for Immunotherapy of Cancer can be referred. Oligo-progression is the main pattern of acquired resistance. Acquired resistance can be derived from the selection of resistant cancer cell clones that exist in the tumor mass before therapeutic intervention or gradual acquisition in the sensitive cancer cells. Specifically, tumor intrinsic mechanisms include neoantigen depletion, defects in antigen presentation machinery, aberrations of interferon signaling, tumor-induced exclusion/immunosuppression, and tumor cell plasticity. Tumor extrinsic mechanisms include upregulation of other immune checkpoints. Presently, a set of treatment modalities is applied to patients with similar clinical characteristics or resistance mechanisms for overcoming acquired resistance, and hence, further research is required.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas de Checkpoint Imunológico/metabolismo , Neoplasias/tratamento farmacológico , Animais , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA