Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Immunity ; 57(3): 478-494.e6, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447571

RESUMO

Emerging evidence has revealed a direct differentiation route from hematopoietic stem cells to megakaryocytes (direct route), in addition to the classical differentiation route through a series of restricted hematopoietic progenitors (stepwise route). This raises the question of the importance of two alternative routes for megakaryopoiesis. Here, we developed fate-mapping systems to distinguish the two routes, comparing their quantitative and functional outputs. We found that megakaryocytes were produced through the two routes with comparable kinetics and quantity under homeostasis. Single-cell RNA sequencing of the fate-mapped megakaryocytes revealed that the direct and stepwise routes contributed to the niche-supporting and immune megakaryocytes, respectively, but contributed to the platelet-producing megakaryocytes together. Megakaryocytes derived from the two routes displayed different activities and were differentially regulated by chemotherapy and inflammation. Our work links differentiation route to the heterogeneity of megakaryocytes. Alternative differentiation routes result in variable combinations of functionally distinct megakaryocyte subpopulations poised for different physiological demands.


Assuntos
Megacariócitos , Trombopoese , Diferenciação Celular/genética , Células-Tronco Hematopoéticas , Plaquetas
2.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861441

RESUMO

Several cell types have been proposed to create the required microenvironment for spermatogenesis. However, expression patterns of the key growth factors produced by these somatic cells have not been systematically studied and no such factor has been conditionally deleted from its primary source(s), raising the question of which cell type(s) are the physiological sources of these growth factors. Here, using single-cell RNA sequencing and a series of fluorescent reporter mice, we found that stem cell factor (Scf), one of the essential growth factors for spermatogenesis, was broadly expressed in testicular stromal cells, including Sertoli, endothelial, Leydig, smooth muscle and Tcf21-CreER+ stromal cells. Both undifferentiated and differentiating spermatogonia were associated with Scf-expressing Sertoli cells in the seminiferous tubule. Conditional deletion of Scf from Sertoli cells, but not any other Scf-expressing cells, blocked the differentiation of spermatogonia, leading to complete male infertility. Conditional overexpression of Scf in Sertoli cells, but not endothelial cells, significantly increased spermatogenesis. Our data reveal the importance of anatomical localization for Sertoli cells in regulating spermatogenesis and that SCF produced specifically by Sertoli cells is essential for spermatogenesis.


Assuntos
Células de Sertoli , Fator de Células-Tronco , Masculino , Animais , Camundongos , Células de Sertoli/metabolismo , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Espermatogônias/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(1): e2203779120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577075

RESUMO

Insulin-like growth factor I (IGF-1) is a key regulator of tissue growth and development in response to growth hormone stimulation. In the skeletal system, IGF-1 derived from osteoblasts and chondrocytes are essential for normal bone development; however, whether bone marrow (BM)-resident cells provide distinct sources of IGF-1 in the adult skeleton remains elusive. Here, we show that BM stromal cells (BMSCs) and megakaryocytes/platelets (MKs/PLTs) express the highest levels of IGF-1 in adult long bones. Deletion of Igf1 from BMSCs by Lepr-Cre leads to decreased bone formation, impaired bone regeneration, and increased BM adipogenesis. Importantly, reduction of BMSC-derived IGF-1 contributes to fasting-induced marrow fat accumulation. In contrast, deletion of Igf1 from MKs/PLTs by Pf4-Cre leads to reduced bone formation and regeneration without affecting BM adipogenesis. To our surprise, MKs/PLTs are also an important source of systemic IGF-1. Platelet-rich plasma (PRP) from Pf4-Cre; Igf1f/fmice showed compromised osteogenic potential both in vivo and in vitro, suggesting that MK/PLT-derived IGF-1 underlies the therapeutic effects of PRP. Taken together, this study identifies BMSCs and MKs/PLTs as two important sources of IGF-1 that coordinate to maintain and regenerate the adult skeleton, highlighting reciprocal regulation between the hematopoietic and skeletal systems.


Assuntos
Medula Óssea , Fator de Crescimento Insulin-Like I , Camundongos , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Diferenciação Celular , Plaquetas/metabolismo , Osteogênese/genética , Células da Medula Óssea/metabolismo , Esqueleto
4.
Nature ; 564(7734): 119-124, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455424

RESUMO

Haematopoietic stem and progenitor cells (HSPCs) give rise to all blood lineages that support the entire lifespan of vertebrates1. After HSPCs emerge from endothelial cells within the developing dorsal aorta, homing allows the nascent cells to anchor in their niches for further expansion and differentiation2-5. Unique niche microenvironments, composed of various blood vessels as units of microcirculation and other niche components such as stromal cells, regulate this process6-9. However, the detailed architecture of the microenvironment and the mechanism for the regulation of HSPC homing remain unclear. Here, using advanced live imaging and a cell-labelling system, we perform high-resolution analyses of the HSPC homing in caudal haematopoietic tissue of zebrafish (equivalent to the fetal liver in mammals), and reveal the role of the vascular architecture in the regulation of HSPC retention. We identify a VCAM-1+ macrophage-like niche cell population that patrols the inner surface of the venous plexus, interacts with HSPCs in an ITGA4-dependent manner, and directs HSPC retention. These cells, named 'usher cells', together with caudal venous capillaries and plexus, define retention hotspots within the homing microenvironment. Thus, the study provides insights into the mechanism of HSPC homing and reveals the essential role of a VCAM-1+ macrophage population with patrolling behaviour in HSPC retention.


Assuntos
Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Macrófagos/metabolismo , Nicho de Células-Tronco , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Microambiente Celular , Integrinas/genética , Integrinas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
EMBO J ; 37(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30037826

RESUMO

The number and self-renewal capacity of hematopoietic stem cells (HSCs) are tightly regulated at different developmental stages. Many pathways have been implicated in regulating HSC development in cell autonomous manners; however, it remains unclear how HSCs sense and integrate developmental cues. In this study, we identified an extrinsic mechanism by which HSC number and functions are regulated during mouse puberty. We found that the HSC number in postnatal bone marrow reached homeostasis at 4 weeks after birth. Luteinizing hormone, but not downstream sex hormones, was involved in regulating HSC homeostasis during this period. Expression of luteinizing hormone receptor (Lhcgr) is highly restricted in HSCs and multipotent progenitor cells in the hematopoietic hierarchy. When Lhcgr was deleted, HSCs continued to expand even after 4 weeks after birth, leading to abnormally elevated hematopoiesis and leukocytosis. In a murine acute myeloid leukemia model, leukemia development was significantly accelerated upon Lhcgr deletion. Together, our work reveals an extrinsic counting mechanism that restricts HSC expansion during development and is physiologically important for maintaining normal hematopoiesis and inhibiting leukemogenesis.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Hormônio Luteinizante/metabolismo , Receptores do LH/metabolismo , Maturidade Sexual , Transdução de Sinais , Animais , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Hormônio Luteinizante/genética , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Receptores do LH/genética
6.
Hepatology ; 74(3): 1578-1594, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33817801

RESUMO

BACKGROUND AND AIMS: Studies of the identity and pathophysiology of fibrogenic HSCs have been hampered by a lack of genetic tools that permit specific and inducible fate-mapping of these cells in vivo. Here, by single-cell RNA sequencing of nonparenchymal cells from mouse liver, we identified transcription factor 21 (Tcf21) as a unique marker that restricted its expression to quiescent HSCs. APPROACH AND RESULTS: Tracing Tcf21+ cells by Tcf21-CreER (Cre-Estrogen Receptor fusion protein under the control of Tcf21 gene promoter) targeted ~10% of all HSCs, most of which were located at periportal and pericentral zones. These HSCs were quiescent under steady state but became activated on injuries, generating 62%-67% of all myofibroblasts in fibrotic livers and ~85% of all cancer-associated fibroblasts (CAFs) in liver tumors. Conditional deletion of Transforming Growth Factor Beta Receptor 2 (Tgfbr2) by Tcf21-CreER blocked HSC activation, compromised liver fibrosis, and inhibited liver tumor progression. CONCLUSIONS: In conclusion, Tcf21-CreER-targeted perivenous stellate cells are the main source of myofibroblasts and CAFs in chronically injured livers. TGF-ß signaling links HSC activation to liver fibrosis and tumorigenesis.


Assuntos
Fibroblastos Associados a Câncer/citologia , Células Estreladas do Fígado/citologia , Cirrose Hepática Experimental/patologia , Hepatopatias/patologia , Neoplasias Hepáticas Experimentais/patologia , Miofibroblastos/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ductos Biliares/cirurgia , Tetracloreto de Carbono/toxicidade , Linhagem da Célula , Colestase , Doença Crônica , Células Estreladas do Fígado/metabolismo , Veias Hepáticas/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática Experimental/metabolismo , Hepatopatias/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos , Miofibroblastos/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Análise de Sequência de RNA , Análise de Célula Única
7.
Nucleic Acids Res ; 48(22): 12792-12803, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270890

RESUMO

Telomeres at the ends of eukaryotic chromosomes are essential for genome integrality and stability. In order to identify genes that sustain telomere maintenance independently of telomerase recruitment, we have exploited the phenotype of over-long telomeres in the cells that express Cdc13-Est2 fusion protein, and examined 195 strains, in which individual non-essential gene deletion causes telomere shortening. We have identified 24 genes whose deletion results in dramatic failure of Cdc13-Est2 function, including those encoding components of telomerase, Yku, KEOPS and NMD complexes, as well as quite a few whose functions are not obvious in telomerase activity regulation. We have characterized Swc4, a shared subunit of histone acetyltransferase NuA4 and chromatin remodeling SWR1 (SWR1-C) complexes, in telomere length regulation. Deletion of SWC4, but not other non-essential subunits of either NuA4 or SWR1-C, causes significant telomere shortening. Consistently, simultaneous disassembly of NuA4 and SWR1-C does not affect telomere length. Interestingly, inactivation of Swc4 in telomerase null cells accelerates both telomere shortening and senescence rates. Swc4 associates with telomeric DNA in vivo, suggesting a direct role of Swc4 at telomeres. Taken together, our work reveals a distinct role of Swc4 in telomere length regulation, separable from its canonical roles in both NuA4 and SWR1-C.


Assuntos
Adenosina Trifosfatases/genética , Histona Acetiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Homeostase do Telômero/genética , Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Histonas/genética , Humanos , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética
8.
Nature ; 527(7579): 466-471, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26570997

RESUMO

Haematopoietic stresses mobilize haematopoietic stem cells (HSCs) from the bone marrow to the spleen and induce extramedullary haematopoiesis (EMH). However, the cellular nature of the EMH niche is unknown. Here we assessed the sources of the key niche factors, SCF (also known as KITL) and CXCL12, in the mouse spleen after EMH induction by myeloablation, blood loss, or pregnancy. In each case, Scf was expressed by endothelial cells and Tcf21(+) stromal cells, primarily around sinusoids in the red pulp, while Cxcl12 was expressed by a subset of Tcf21(+) stromal cells. EMH induction markedly expanded the Scf-expressing endothelial cells and stromal cells by inducing proliferation. Most splenic HSCs were adjacent to Tcf21(+) stromal cells in red pulp. Conditional deletion of Scf from spleen endothelial cells, or of Scf or Cxcl12 from Tcf21+ stromal cells, severely reduced spleen EMH and reduced blood cell counts without affecting bone marrow haematopoiesis. Endothelial cells and Tcf21(+) stromal cells thus create a perisinusoidal EMH niche in the spleen, which is necessary for the physiological response to diverse haematopoietic stresses.


Assuntos
Hematopoese Extramedular , Células-Tronco Hematopoéticas/citologia , Baço/citologia , Nicho de Células-Tronco , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Contagem de Células Sanguíneas , Quimiocina CXCL12/deficiência , Quimiocina CXCL12/metabolismo , Células Endoteliais/metabolismo , Eritropoese , Feminino , Hemorragia/fisiopatologia , Masculino , Camundongos , Gravidez , Baço/irrigação sanguínea , Baço/metabolismo , Fator de Células-Tronco/deficiência , Fator de Células-Tronco/metabolismo , Células Estromais/metabolismo
9.
EMBO J ; 30(14): 2829-42, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21685874

RESUMO

The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an important chromatin modifying complex that can both acetylate and deubiquitinate histones. Sgf29 is a novel component of the SAGA complex. Here, we report the crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, and show that Sgf29 selectively binds H3K4me2/3 marks. Our crystal structures reveal that Sgf29 harbours unique tandem Tudor domains in its C-terminus. The tandem Tudor domains in Sgf29 tightly pack against each other face-to-face with each Tudor domain harbouring a negatively charged pocket accommodating the first residue alanine and methylated K4 residue of histone H3, respectively. The H3A1 and K4me3 binding pockets and the limited binding cleft length between these two binding pockets are the structural determinants in conferring the ability of Sgf29 to selectively recognize H3K4me2/3. Our in vitro and in vivo functional assays show that Sgf29 recognizes methylated H3K4 to recruit the SAGA complex to its targets sites and mediates histone H3 acetylation, underscoring the importance of Sgf29 in gene regulation.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Acetilação , Acetiltransferases/genética , Sequência de Aminoácidos , Western Blotting , Imunoprecipitação da Cromatina , Histona Acetiltransferases/genética , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Transativadores/genética
10.
PLoS Genet ; 7(1): e1001272, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21249184

RESUMO

Recent studies have established that the highly condensed and transcriptionally silent heterochromatic domains in budding yeast are virtually dynamic structures. The underlying mechanisms for heterochromatin dynamics, however, remain obscure. In this study, we show that histones are dynamically acetylated on H4K12 at telomeric heterochromatin, and this acetylation regulates several of the dynamic telomere properties. Using a de novo heterochromatin formation assay, we surprisingly found that acetylated H4K12 survived the formation of telomeric heterochromatin. Consistently, the histone acetyltransferase complex NuA4 bound to silenced telomeric regions and acetylated H4K12. H4K12 acetylation prevented the over-accumulation of Sir proteins at telomeric heterochromatin and elimination of this acetylation caused defects in multiple telomere-related processes, including transcription, telomere replication, and recombination. Together, these data shed light on a potential histone acetylation mark within telomeric heterochromatin that contributes to telomere plasticity.


Assuntos
Heterocromatina/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/genética , Acetilação , Replicação do DNA , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Lisina/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Transcrição Gênica
11.
Dev Cell ; 59(9): 1192-1209.e6, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38554700

RESUMO

Bone is regarded as one of few tissues that heals without fibrous scar. The outer layer of the periosteum is covered with fibrous tissue, whose function in bone formation is unknown. We herein developed a system to distinguish the fate of fibrous-layer periosteal cells (FL-PCs) from the skeletal stem/progenitor cells (SSPCs) in the cambium-layer periosteum and bone marrow in mice. We showed that FL-PCs did not participate in steady-state osteogenesis, but formed the main body of fibrocartilaginous callus during fracture healing. Moreover, FL-PCs invaded the cambium-layer periosteum and bone marrow after fracture, forming neo-SSPCs that continued to maintain the healed bones throughout adulthood. The FL-PC-derived neo-SSPCs expressed lower levels of osteogenic signature genes and displayed lower osteogenic differentiation activity than the preexisting SSPCs. Consistent with this, healed bones were thinner and formed more slowly than normal bones. Thus, the fibrous periosteum becomes the cellular origin of bones after fracture and alters bone properties permanently.


Assuntos
Diferenciação Celular , Consolidação da Fratura , Fraturas Ósseas , Osteogênese , Periósteo , Animais , Periósteo/metabolismo , Camundongos , Osteogênese/fisiologia , Consolidação da Fratura/fisiologia , Fraturas Ósseas/patologia , Fraturas Ósseas/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos Endogâmicos C57BL , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Masculino
12.
Cell Metab ; 36(1): 209-221.e6, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171334

RESUMO

Metabolic status is crucial for stem cell functions; however, the metabolic heterogeneity of endogenous stem cells has never been directly assessed. Here, we develop a platform for high-throughput single-cell metabolomics (hi-scMet) of hematopoietic stem cells (HSCs). By combining flow cytometric isolation and nanoparticle-enhanced laser desorption/ionization mass spectrometry, we routinely detected >100 features from single cells. We mapped the single-cell metabolomes of all hematopoietic cell populations and HSC subpopulations with different division times, detecting 33 features whose levels exhibited trending changes during HSC proliferation. We found progressive activation of the oxidative pentose phosphate pathway (OxiPPP) from dormant to active HSCs. Genetic or pharmacological interference with OxiPPP increased reactive oxygen species level in HSCs, reducing HSC self-renewal upon oxidative stress. Together, our work uncovers the metabolic dynamics during HSC proliferation, reveals a role of OxiPPP for HSC activation, and illustrates the utility of hi-scMet in dissecting metabolic heterogeneity of immunophenotypically defined cell populations.


Assuntos
Células-Tronco Hematopoéticas , Estresse Oxidativo , Células-Tronco Hematopoéticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular
13.
Adv Sci (Weinh) ; 10(29): e2303291, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553778

RESUMO

Periodontium supports teeth in a mechanically stimulated tissue environment, where heterogenous stem/progenitor populations contribute to periodontal homeostasis. In this study, Leptin receptor+ (Lepr+) cells are identified as a distinct periodontal ligament stem cell (PDLSC) population by single-cell RNA sequencing and lineage tracing. These Lepr+ PDLSCs are located in the peri-vascular niche, possessing multilineage potential and contributing to tissue repair in response to injury. Ablation of Lepr+ PDLSCs disrupts periodontal homeostasis. Hyper-loading and unloading of occlusal forces modulate Lepr+ PDLSCs activation. Piezo1 is demonstrated that mediates the mechanosensing of Lepr+ PDLSCs by conditional Piezo1-deficient mice. Meanwhile, Yoda1, a selective activator of Piezo1, significantly accelerates periodontal tissue growth via the induction of Lepr+ cells. In summary, Lepr marks a unique multipotent PDLSC population in vivo, to contribute toward periodontal homeostasis via Piezo1-mediated mechanosensing.


Assuntos
Receptores para Leptina , Dente , Animais , Camundongos , Receptores para Leptina/genética , Diferenciação Celular/fisiologia , Ligamento Periodontal , Células-Tronco , Canais Iônicos/genética
14.
Leukemia ; 37(12): 2457-2467, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37816954

RESUMO

Somatic loss-of-function mutations of the dioxygenase Ten-eleven translocation-2 (TET2) occur frequently in individuals with clonal hematopoiesis (CH) and acute myeloid leukemia (AML). These common hematopoietic disorders can be recapitulated in mouse models. However, the underlying mechanisms by which the deficiency in TET2 promotes these disorders remain unclear. Here we show that the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway is activated to mediate the effect of TET2 deficiency in dysregulated hematopoiesis in mouse models. DNA damage arising in Tet2-deficient hematopoietic stem/progenitor cells (HSPCs) leads to activation of the cGAS-STING pathway which in turn promotes the enhanced self-renewal and development of CH. Notably, both pharmacological inhibition and genetic deletion of STING suppresses Tet2 mutation-induced aberrant hematopoiesis. In patient-derived xenograft (PDX) models, STING inhibition specifically attenuates the proliferation of leukemia cells from TET2-mutated individuals. These observations suggest that the development of CH associated with TET2 mutations is powered through chronic inflammation dependent on the activated cGAS-STING pathway and that STING may represent a potential target for intervention of relevant hematopoietic diseases.


Assuntos
Dioxigenases , Doenças Hematológicas , Camundongos , Animais , Humanos , Transformação Celular Neoplásica/genética , Translocação Genética , Hematopoese/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/farmacologia , Células-Tronco/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética
15.
J Biol Chem ; 286(40): 34770-6, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21849496

RESUMO

Recent transcription of GAL genes transiently leaves an H3K4 methylation mark at their promoters, providing an epigenetic memory for the recent transcriptional activity. However, the physiological significance of this mark is enigmatic. In our study, we show that the transient H3K4 di- and trimethylation at recently transcribed GAL1 inhibited the reinduction of GAL1. The H3K4 methylation functioned by recruiting the Isw1 ATPase onto GAL1 and thereby limiting the action of RNA polymerase II during GAL1 reactivation. Strikingly, the H3K4 methylation was also observed at the promoters of inositol- and fatty acid-responsive genes after recent transcription and played a negative role in their reinduction. Taken together, our data present a new mechanism by which H3K4 methylation regulates gene transcription.


Assuntos
Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/química , Lisina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Epigênese Genética , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Deleção de Genes , Cinética , Metilação , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
16.
Proc Natl Acad Sci U S A ; 106(52): 22187-92, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018712

RESUMO

DNA methylation and histone modification are two major epigenetic pathways that interplay to regulate transcriptional activity and other genome functions. Dnmt3L is a regulatory factor for the de novo DNA methyltransferases Dnmt3a and Dnmt3b. Although recent biochemical studies have revealed that Dnmt3L binds to the tail of histone H3 with unmethylated lysine 4 in vitro, the requirement of chromatin components for DNA methylation has not been examined, and functional evidence for the connection of histone tails to DNA methylation is still lacking. Here, we used the budding yeast Saccharomyces cerevisiae as a model system to investigate the chromatin determinants of DNA methylation through ectopic expression of murine Dnmt3a and Dnmt3L. We found that the N terminus of histone H3 tail is required for de novo methylation, while the central part encompassing lysines 9 and 27, as well as the H4 tail are dispensable. DNA methylation occurs predominantly in heterochromatin regions lacking H3K4 methylation. In mutant strains depleted of H3K4 methylation, the DNA methylation level increased 5-fold. The methylation activity of Dnmt3a largely depends on the Dnmt3L's PHD domain recognizing the histone H3 tail with unmethylated lysine 4. Functional analysis of Dnmt3L in mouse ES cells confirmed that the chromatin-recognition ability of Dnmt3L's PHD domain is indeed required for efficient methylation at the promoter of the endogenous Dnmt3L gene. These findings establish the N terminus of histone H3 tail with an unmethylated lysine 4 as a chromatin determinant for DNA methylation.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Histonas/química , Histonas/metabolismo , Animais , Cromatina/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , Histonas/genética , Técnicas In Vitro , Metilação , Camundongos , Modelos Biológicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Cell Stem Cell ; 29(11): 1562-1579.e7, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332570

RESUMO

During fetal development, human hematopoietic stem cells (HSCs) colonize the bone marrow (BM), where they self-renew and sustain hematopoiesis throughout life; however, the precise timepoint at which HSCs seed the BM is unclear. We used single-cell RNA-sequencing to map the transcriptomic landscape of human fetal BM and spleen hematopoietic stem/progenitor cells (HSPCs) and their microenvironment from 10 to 14 post-conception weeks (PCWs). We further demonstrated that functional HSCs capable of reconstituting long-term multi-lineage hematopoiesis in adult NOG mice do not emerge in the BM until 12 PCWs. In contrast, functional HSCs were not detected in the spleen by 14 PCWs. By comparing the niche-HSPC interactions between BM and spleen, we identified ligand-receptor pairs likely to be involved in fetal HSC migration and maintenance. Our work paves the way for research into the mechanisms underlying HSC colonization in human fetal BM and provides invaluable resources for future studies on HSC development.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Adulto , Humanos , Camundongos , Animais , Hematopoese/genética , Células da Medula Óssea , Análise de Sequência de RNA
18.
J Biol Chem ; 285(6): 4251-4262, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20007951

RESUMO

Rtt106p is a Saccharomyces cerevisiae histone chaperone with roles in heterochromatin silencing and nucleosome assembly. The molecular mechanism by which Rtt106p engages in chromatin dynamics remains unclear. Here, we report the 2.5 A crystal structure of the core domain of Rtt106p, which adopts an unusual "double pleckstrin homology" domain architecture that represents a novel structural mode for histone chaperones. A histone H3-H4-binding region and a novel double-stranded DNA-binding region have been identified. Mutagenesis studies reveal that the histone and DNA binding activities of Rtt106p are involved in Sir protein-mediated heterochromatin formation. Our results uncover the structural basis of the diverse functions of Rtt106p and provide new insights into its cellular roles.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Heterocromatina/genética , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Western Blotting , Cristalografia por Raios X , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação , Nucleossomos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo
19.
Nucleic Acids Res ; 37(11): 3699-713, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19372273

RESUMO

In the eukaryotic genome, transcriptionally silent chromatin tends to propagate along a chromosome and encroach upon adjacent active chromatin. The silencing machinery can be stopped by chromatin boundary elements. We performed a screen in Saccharomyces cerevisiae for proteins that may contribute to the establishment of a chromatin boundary. We found that disruption of histone deacetylase Rpd3p results in defective boundary activity, leading to a Sir-dependent local propagation of transcriptional repression. In rpd3 Delta cells, the amount of Sir2p that was normally found in the nucleolus decreased and the amount of Sir2p found at telomeres and at HM and its adjacent loci increased, leading to an extension of silent chromatin in those areas. In addition, Rpd3p interacted directly with chromatin at boundary regions to deacetylate histone H4 at lysine 5 and at lysine 12. Either the mutation of histone H4 at lysine 5 or a decrease in the histone acetyltransferase (HAT) activity of Esa1p abrogated the silencing phenotype associated with rpd3 mutation, suggesting a novel role for the H4 amino terminus in Rpd3p-mediated heterochromatin boundary regulation. Together, these data provide insight into the molecular mechanisms for the anti-silencing functions of Rpd3p during the formation of heterochromatin boundaries.


Assuntos
Inativação Gênica , Heterocromatina/metabolismo , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/antagonistas & inibidores , Sirtuínas/antagonistas & inibidores , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/análise , Histona Desacetilases/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Mutação , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/análise , Sirtuína 2 , Sirtuínas/análise
20.
Cell Stem Cell ; 28(12): 2122-2136.e3, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34499868

RESUMO

Multiple distinct types of skeletal progenitors have been shown to contribute to endochondral bone development and maintenance. However, the division of labor and hierarchical relationship between different progenitor populations remain undetermined. Here we developed dual-recombinase fate-mapping systems to capture the skeletal progenitor transition during postnatal bone formation. We showed that postnatal osteoblasts arose primarily from chondrocytes before adolescence and from Lepr+ bone marrow stromal cells (BMSCs) after adolescence. This transition occurred in the diaphysis during adolescence and progressively spread to the metaphysis. The osteoblast-forming Lepr+ BMSCs derived primarily from fetal Col2+ cells. Conditional deletion of Runx2 from perinatal chondrocytes and adult Lepr+ BMSCs impaired bone lengthening and thickening, respectively. Forced running increased osteoblast formation by perinatal chondrocytes but not by adult Lepr+ BMSCs. Thus, the short-term developmental skeletal progenitors generated the long-term adult skeletal progenitors. They sequentially control the growth and maintenance of endochondral bones.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Desenvolvimento Ósseo , Condrócitos , Osteoblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA