Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(19): 55044-55056, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36882657

RESUMO

The construction of heterojunctions between semiconductors is a preferred route to improve overall photocatalytic activity. In this work, a facile and feasible method was innovatively developed to one-step prepare g-C3N4/TiO2 heterojunctions via an absorption-calcination process using nitrogen and titanium precursors directly. This method can effectively avoid interfacial defects and establish a tight interfacial connection between g-C3N4 and TiO2. The resultant g-C3N4/TiO2 composites exhibited prominent photodegradation efficiency for tetracycline hydrochloride (TC-HCl) under visible light and simulated-sunlight irradiation. The optimal g-C3N4/TiO2 composite (urea content of 4 g) showed the highest photocatalytic efficiency, which can degrade 90.1% TC-HCl under simulated-sunlight irradiation within 30 min, achieving 3.9 and 2 times increases compared to pure g-C3N4 and TiO2, respectively. Besides, photodegradation pathways based on the role of active species ·O2- and ·OH were identified, indicating that a direct Z-scheme heterojunction was formed over the g-C3N4/TiO2 photocatalyst. The enhanced photocatalytic performance can be attributed to the close-knit interface contact and the formation of Z-scheme heterojunction between g-C3N4 and TiO2, which can accelerate the photo-induced charge carrier separation, broaden the spectra absorption range, and retain a higher redox potential. This one-step synthesis method may provide a new strategy for the construction of Z-scheme heterojunction photocatalysts consisting of g-C3N4 and TiO2 for environmental remediation and solar energy utilization.


Assuntos
Recuperação e Remediação Ambiental , Tetraciclina
2.
Heliyon ; 9(1): e12812, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699279

RESUMO

In this paper, a direct numerical simulation (DNS) of dielectric fluid flow subjected to unipolar injection under an alternating current (AC) electric field is carried out. The effect of frequency f of pulsed direct current (PDC) and AC on the transient evolution of electroconvection and their subcritical bifurcations are investigated in details. Electroconvection under PDC or AC tends to exhibit oscillating flow due to the periodic boundary condition of charge density and potential compared to the direct current (DC) case. The results demonstrate that under the PDC field, the linear criterion T c decreases with increasing frequency, while the nonlinear stability criterion T f is hardly affected. Under the AC field, a critical frequency f c  = 0.0316 is found, which separates electroconvection into two typical flow regimes-periodic flow regime (f < f c ) and inhibited flow regime (f ≥ f c )-depending on whether free charges can reach the collector electrode before electric field inversion. AC-electrohydrodynamics (EHD) systems promote various flow patterns with relatively lower voltage regimes than DC-EHD systems. These mechanisms of electroconvection under the PDC/AC field offer unique possibilities for fluid flow control in biological EHD-driven flow and portable EHD applications.

3.
Environ Sci Pollut Res Int ; 29(56): 85095-85102, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35793014

RESUMO

CeF3-O with intermediate band showed improved synergic photodegradation activity toward HCl-TC and RhB under NIR light irradiation when enhanced by Ag as a cocatalyst. Ag+ ions take electrons from the second transition in CeF3-O's intermediate band, which are then reduced to Ag as cocatalyst. The photodegradation efficiencies of HCl-TC by various Ag/CeF3-O nanoparticles in 180-min increase from 26.5 to 73.1%. The optimal Ag/CeF3-O-100 is about 2.76 times that of pure CeF3-O. Ag/CeF3-O-100 has an apparent rate constant of 4.5 × 10-3 min-1, which is 3.0 times that of pure CeF3-O. Similarly, Ag/CeF3-O-10 achieves a superior photodegradation efficiency of RhB at 96.7% under NIR light within 120 min. Its apparent rate constant of 27.7 × 10-3 min-1 is 12.0 times that of pure CeF3-O (2.3 × 10-3 min-1). Further, the turnover frequencies of Ag/CeF3-O nanoparticles are greatly higher than that of the corresponding pure CeF3-O nanoparticles. Ag-enhanced CeF3-O has a unique metal-semiconductor interface where Ag acts as a bridge for facilitating charge transfer and the separation efficiency of photogenerated carries. The synergic effect between CeF3-O and Ag provides a practical technique for enhancing the wastewater treatment with NIR light irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA