Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicology ; 32(3): 336-343, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36964297

RESUMO

There is growing contamination of copper (Cu) in the marine environment, particularly after the ban of organotin compounds and the increase of the use of Cu-based antifouling paints. Although there are increasing research interests in temperature-dependent chemical toxicity to aquatic organisms, most existing studies focused on acute impacts of chemicals at high concentrations. This study aimed to investigate the interacting effect of temperature and copper exposure at environmentally relevant concentrations on survival and development in the marine copepod Tigriopus japonicus with a partial life-cycle toxicity test. Expressions of five stress response genes in the copepod, namely two glutathione S-transferases (GST-S and GST-O), two heat shock proteins (HSP70 and HSP90), and glutathione reductase (GR) were also investigated. The copepod's survival was significantly impaired at 15 °C after development to adult stage, while its developmental time reduced significantly with increasing temperature. Copper at the two environmentally relevant test concentrations had no significant impacts on these apical endpoints whereas the interaction between Cu and temperature was more significant in modulating gene expressions. GST-S, GST-O and HSP90 genes in copepods exposed to 100 µg Cu L-1 were significantly upregulated at 20 °C. At 32 °C, most genes were either insignificantly expressed or down-regulated, compared to the control, likely suggesting that thermal stress inhibited the copepod's antioxidative defense system. Overall, the results revealed that the joint Cu and thermal stresses have significantly elicited antioxidative system in the copepods. It clearly demonstrated the need for more fundamental studies about potential impacts of different environmental factors such as temperature on chemical toxicity under realistic scenario of marine pollution.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Cobre/metabolismo , Copépodes/genética , Temperatura , Testes de Toxicidade/métodos , Antioxidantes/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
2.
Mol Psychiatry ; 26(10): 5669-5689, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32132650

RESUMO

Circulating adiponectin (APN) levels decrease with age and obesity. On the other hand, a reduction in APN levels is associated with neurodegeneration and neuroinflammation. We previously showed that aged adiponectin knockout (APN-/-) mice developed Alzheimer's like pathologies, cerebral insulin resistance, and cognitive impairments. More recently, we also demonstrated that APN deficiency increased Aß-induced microglia activation and neuroinflammatory responses in 5xFAD mice. There is compelling evidence that deregulated insulin activities or cerebral insulin resistance contributes to neuroinflammation and Alzheimer's disease (AD) pathogenesis. Here, we demonstrated that APN levels were reduced in the brain of AD patients and 5xFAD mice. We crossbred 5xFAD mice with APN-/- mice to generate APN-deficient 5xFAD (5xFAD;APN-/-). APN deficiency in 5xFAD mice accelerated amyloid loading, increased cerebral amyloid angiopathy, and reduced insulin-signaling activities. Pharmacokinetics study demonstrated adipoRon (APN receptor agonist) was a blood-brain barrier penetrant. AdipoRon improved neuronal insulin-signaling activities and insulin sensitivity in vitro and in vivo. Chronic adipoRon treatment improved spatial memory functions and significantly rescued neuronal and synaptic loss in 5xFAD and 5xFAD;APN-/- mice. AdipoRon lowered plaque and Aß levels in AD mice. AdipoRon also exerted anti-inflammatory effects by reducing microglial and astrocytes activation as well as suppressing cerebral cytokines levels. The microglial phagocytic activity toward Aß was restored after adipoRon treatment. Our results indicated that adipoRon exerts multiple beneficial effects providing important therapeutic implications. We propose chronic adipoRon administration as a potential treatment for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Administração Oral , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Animais , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Piperidinas/uso terapêutico
3.
Ecotoxicol Environ Saf ; 235: 113455, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35358921

RESUMO

Being a class of vitamin A's main derivatives, retinoic acids (RAs) are important to animals' growth and development. Previous studies demonstrated that exposure of excessive amounts of RAs would lead to malformation and abnormal development in aquatic animals such as amphibians and fishes. Currently, there are only limited toxicity data of RAs available for freshwater species, while those for marine species are seriously lacking. This study aimed to fill such data gap by conducting toxicity tests on six marine species (i.e., one microalga, four invertebrates and one fish) towards the exposure to all-trans-RA (at-RA), which is the most widely distributed RA in the environment. Results showed that the embryo of medaka fish Oryzias melastigma was the most sensitive towards the exposure of at-RA while the gastropod Monodonta labio was the least sensitive. A species sensitivity distribution (SSD) was constructed based on the experimental results generated from the present study. An interim marine-specific predicted no-effect concentration (PNEC) of at-RA was derived at 2300 ng/L. By computing the hazard quotients using the interim marine-specific PNEC and available measured and predicted concentrations of RAs, we found the current levels of RAs posed no immediate risks to the marine environment of Hong Kong. The interim marine-specific PNEC was more than 500-fold of freshwater-specific PNEC (i.e., 3.93 ng/L), indicating that marine species were generally less sensitive than their freshwater counterparts towards RAs. This was the first study to document the concentration-response of various marine species towards at-RA exposure and construct the marine-specific SSD for assessing the ecological risk of at-RA towards the marine environment. Since various forms of RAs and their metabolites often coexist in aquatic environments, further studies should investigate their combined toxicity to an array of marine species of different trophic levels with consideration of chronic exposure scenarios.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Água Doce , Invertebrados , Tretinoína , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Environ Sci Technol ; 55(10): 6917-6925, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33961412

RESUMO

Coated zinc oxide nanoparticles (ZnO-NPs) are more commonly applied in commercial products but current risk assessments mostly focus on bare ZnO-NPs. To investigate the impacts of surface coatings, this study examined acute and chronic toxicities of six chemicals, including bare ZnO-NPs, ZnO-NPs with three silane coatings of different hydrophobicity, zinc oxide bulk particles (ZnO-BKs), and zinc ions (Zn-IONs), toward a marine copepod, Tigriopus japonicus. In acute tests, bare ZnO-NPs and hydrophobic ZnO-NPs were less toxic than hydrophilic ZnO-NPs. Analyses of the copepod's antioxidant gene expression suggested that such differences were governed by hydrodynamic size and ion dissolution of the particles, which affected zinc bioaccumulation in copepods. Conversely, all test particles, except the least toxic hydrophobic ZnO-NPs, shared similar chronic toxicity as Zn-IONs because they mostly dissolved into zinc ions at low test concentrations. The metadata analysis, together with our test results, further suggested that the toxicity of coated metal-associated nanoparticles could be predicted by the hydrophobicity and density of their surface coatings. This study evidenced the influence of surface coatings on the physicochemical properties, toxicity, and toxic mechanisms of ZnO-NPs and provided insights into the toxicity prediction of coated nanoparticles from their coating properties to improve their future risk assessment and management.


Assuntos
Copépodes , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/toxicidade , Zinco/toxicidade , Óxido de Zinco/toxicidade
5.
Ecotoxicol Environ Saf ; 206: 111373, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002820

RESUMO

Water quality guidelines and ecological risk assessment of chemical substances like nickel (Ni) in tropical regions such as South East Asia and Melanesia are often based on temperate information as a result of fewer Ni ecotoxicity data available for tropical species. This leaves an unknown margin of uncertainty in the risk assessment in the tropics. In order to fill this data gap, this study was designed to conduct standard toxicity tests on Ni with two freshwater species (acute tests) and three marine species (acute and chronic tests) originated from tropical Hong Kong. All tests were carried out using measured concentrations of Ni with control mortality below 15%. The median lethal concentrations (LC50s) were determined as 2520 (95% confidence interval: 2210, 2860) and 426 (351, 515) µg Ni L-1 for the freshwater gastropods Pomacea lineata (48 h) and Sulcospira hainanensis (96 h), respectively, while 96 h LC50s of 4300 (3610, 5090), 18,200 (6470, 51,200), 62,400 (56,800, 68,500), and 71,700 (68,200, 75,400) µg Ni L-1 were derived for the marine copepod Tigriopus japonicus, the gastropod Monodonta labio, juvenile and adult of the marine fish Oryzias melastigma, respectively. The chronic effect concentration of 10% (EC10) based on the intrinsic rate of increase of the population of T. japonicus was 29 (12, 69) µg Ni L-1. In terms of growth inhibition, the chronic EC10 for M. labio was 34 (17, 67) µg Ni L-1. The results also indicated that T. japonicus in maturation stage (LC10: 484 (349, 919) µg Ni L-1) was less sensitive than its nauplii stage (LC10: 44 (27, 72) µg Ni L-1). This study represents an important addition of high-quality toxicity data to the tropical Ni toxicity database which can be used for future ecological risk assessment of Ni and derivation of its water quality guidelines in tropical regions.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecotoxicologia , Níquel/toxicidade , Clima Tropical , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/classificação , Ecotoxicologia/normas , Água Doce , Hong Kong , Dose Letal Mediana , Níquel/análise , Água do Mar , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 53(21): 12269-12277, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31556997

RESUMO

In early August 2017, a serious palm stearin pollution accident occurred in the Pearl River Estuary, South China. While there were already several palm oil related spills around the world, the ecological effects and risks of such accidents to coastal marine environments remain largely unknown. In this study, we found that all seawater and sediment samples collected from six coastal sites were heavily contaminated by palm stearin within 1 week of the accident, and their levels significantly decreased to preaccident levels after four months. Waterborne exposure to palm stearin resulted in growth inhibition to four microalgal species (range of EC50: 9.9-212.6 mg/L) and acute mortality to four invertebrate species (range of LC50: 4.6-409.3 mg/L), while adverse chronic effects of palm stearin on the survival, development, and fecundity of Tigriopus japonicus and on the growth of Oryzias melastigma were observed. On the basis of these results, its interim-predicted no effect concentration was determined as 0.141 mg/L. The hazard quotient of palm stearin greatly exceeded 1 at all sites in August 2017 but returned to <1 at four sites and <2 at the other two sites in November 2017, indicating that its ecological risk was relatively transient and short-term.


Assuntos
Ecossistema , Poluentes Químicos da Água , Acidentes , China , Monitoramento Ambiental , Estuários , Rios
7.
Ecotoxicol Environ Saf ; 182: 109455, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31344592

RESUMO

Irgarol 1051 is highly toxic to marine autotrophs and has been widely used as an antifouling booster biocide. This study tested the toxicities of two s-triazine derivatives of Irgarol, namely M2 (3-[4-tert-butylamino-6-methylthiol-s-triazin-2-ylamino]propionaldehyde) and M3 (2-methylthio-4,6-bis-tert-butylamino-s-triazine) to two marine diatom species, Skeletonema costatum and Thalassiosira pseudonana through standard acute (96h) and chronic (7d) growth inhibition tests. Results showed that both of the two chemicals significantly inhibited the growth of S. costatum (M2: 96h-EC50 = 6789.7 µg L-1, 7d-EC50 = 3503.7 µg L-1; M3: 96h-EC50 = 45193.9 µg L-1, 7d-EC50 = 5330.0 µg L-1) and T. pseudonana (M2: 96h-EC50 = 366.2 µg L-1, 7d-EC50 = 312.5 µg L-1; M3: 96h-EC50 = 2633.4 µg L-1, 7d-EC50 = 710.5 µg L-1), while their toxicity effects were much milder than Irgarol and its major degradation product M1. By comparing with previous findings, the susceptibilities of these s-triazine compounds to two tested species were ranked as: Irgarol > M1 ≫ M2 > M3. This study promotes future research efforts on better understanding of the ecotoxicities of M2 and M3, and incorporating such information to improve the current monitoring, risk assessment and regulation of the use of Irgarol.


Assuntos
Diatomáceas/efeitos dos fármacos , Desinfetantes/toxicidade , Triazinas/toxicidade , Poluentes Químicos da Água/toxicidade , Diatomáceas/crescimento & desenvolvimento , Desinfetantes/química , Especificidade da Espécie , Relação Estrutura-Atividade , Testes de Toxicidade , Triazinas/química , Poluentes Químicos da Água/química
8.
Ecotoxicol Environ Saf ; 132: 59-67, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27262215

RESUMO

This study aims to test if RNA/DNA ratio and various energy reserve parameters (i.e., glycogen, lipid, protein content and total energy reserves) are sensitive biomarkers for indicating stresses induced by metal contaminants in the green-lipped mussel Perna viridis, a common organism for biomonitoring in Southeast Asia. This study was, therefore, designed to examine the effects of cadmium (Cd) and copper (Cu) on these potential biomarkers in two major energy storage tissues, adductor muscle (AM) and hepatopancreas (HP), of P. viridis after sub-lethal exposure to either metal for 10 days. The results showed that neither Cd nor Cu treatments affected the RNA/DNA ratio, glycogen and protein contents in AM and HP. As the most sensitive biomarker in P. viridis, the total lipid content in both AM and HP was significantly decreased in the treatment of 5µg Cu/L and 0.01-0.1µgCd/L, respectively. However, soft-tissue body burdens of Cu or Cd did not significantly correlate with each of the four biomarkers regardless of the tissue type. In addition, AM generally stored more glycogen than HP, whereas HP stored more lipids than AM. We proposed that multiple biomarkers may be employed as an integrated diagnostic tool for monitoring the health condition of the mussels.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Monitoramento Ambiental , Perna (Organismo)/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Cádmio/metabolismo , Cobre/metabolismo , DNA/metabolismo , Hepatopâncreas/efeitos dos fármacos , Músculos/metabolismo , RNA/metabolismo , Poluentes Químicos da Água/análise
9.
Ecotoxicology ; 24(7-8): 1498-507, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25854898

RESUMO

Organophosphate pesticides (OPs), as a replacement for the organochlorine pesticides, are generally considered non-toxic to plants and algae. Chlorpyrifos and dichlorvos are two OPs used for pest control all over the world. In this study, the dose-response of cyanobacteria Microcystis wesenbergii on OPs exposure and the stimulating effect of OPs with and without phosphorus source were investigated. The results showed that high concentrations of chlorpyrifos and dichlorvos caused significant decrease of chlorophyll a content. The median inhibitory concentrations (EC50) of chlorpyrifos and dichlorvos at 96 h were 15.40 and 261.16 µmol L(-1), respectively. Growth of M. wesenbergii under low concentration of OPs (ranged from 1/10,000 to 1/20 EC50), was increased by 35.85 % (chlorpyrifos) and 41.83 % (dichlorvos) at 120 h, respectively. Correspondingly, the highest enhancement on the maximum quantum yield (F v/F m) was 4.20 % (24 h) and 9.70 % (48 h), respectively. Chlorophyll fluorescence kinetics, known as O-J-I-P transients, showed significant enhancements in the O-J, J-I, and I-P transients under low concentrations of dichlorvos at 144 h, while enhancements of chlorophyll fluorescence kinetics induced by low concentrations of chlorpyrifos were only observed in the J-I transient at 144 h. Significant decreases of chlorophyll content, F v/F m and O-J-I-P transients with OPs as sole phosphorus source were found when they were compared with inorganic phosphate treatments. The results demonstrated an evidently hormetic dose-response of M. wesenbergii to both chlorpyrifos and dichlorvos, where high dose (far beyond environmental concentrations) exposure caused growth inhibition and low dose exposure induced enhancement on physiological processes. The stimulating effect of two OPs on growth of M. wesenbergii was negligible under phosphate limitation.


Assuntos
Clorpirifos/toxicidade , Diclorvós/toxicidade , Inseticidas/toxicidade , Microcystis/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biodegradação Ambiental , Clorofila/metabolismo , Clorofila A , Relação Dose-Resposta a Droga , Fluorescência , Hormese , Cinética , Microcystis/metabolismo
10.
Sci Total Environ ; 923: 171371, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432364

RESUMO

The wide application of benzophenones (BPs), such as benzophenone-3 (BP3), as an ingredient in sunscreens, cosmetics, coatings, and plastics, has led to their global contamination in aquatic environments. Using the marine diatom Chaetoceros neogracilis as a model, this study assessed the toxic effects and mechanisms of BP3 and its two major metabolites (BP8 and BP1). The results showed that BP3 exhibited higher toxicity on C. neogracilis than BP8 and BP1, with their 72-h median effective concentrations being 0.4, 0.8 and 4 mg/L, respectively. Photosynthesis efficiencies were significantly reduced after exposure to environmentally relevant concentrations of the three benzophenones, while cell viability, membrane integrity, membrane potential, and metabolic activities could be further impaired at their higher concentrations. Comparative transcriptomic analysis, followed by gene ontology and KEGG pathway enrichment analyses unraveled that all the three tested benzophenones disrupted photosynthesis and nitrogen metabolism of the diatom through alteration of similar pathways. The toxic effect of BP3 was also attributable to its unique inhibitory effects on eukaryotic ribosome biosynthesis and DNA replication. Taken together, our findings underscore that benzophenones may pose a significant threat to photosynthesis, oxygen production, primary productivity, carbon fixation, and the nitrogen cycle of diatom in coastal waters worldwide.


Assuntos
Cosméticos , Diatomáceas , Diatomáceas/metabolismo , Protetores Solares/toxicidade , Protetores Solares/metabolismo , Cosméticos/metabolismo , Benzofenonas/toxicidade , Benzofenonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA