Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 24(1): 113, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765290

RESUMO

BACKGROUND: Bone mineral density (BMD) alterations in response to multivitamin exposure were rarely studied. Our study assessed the association of coexposure to six types of vitamins (i.e., vitamins B12, B9, C, D, A and E) with BMD measurements in adults in the US. METHODS: Data were collected from participants aged ≥ 20 years (n = 2757) in the U.S. National Health and Nutrition Examination Surveys (NHANES) from 2005 to 2006. Multiple linear regression, restricted cubic splines, principal component analysis (PCA) and weighted quantile sum (WQS) regression were performed for statistical analysis. RESULTS: The circulating levels of vitamins B12 and C were positively associated with BMDs, and an inverted L-shaped exposure relationship was observed between serum vitamin C and BMDs. PCA identified two principal components: one for 'water-soluble vitamins', including vitamins B12, B9 and C, and one for 'fat-soluble vitamins', including vitamins A, D and E. The former was positively associated with total femur (ß = 0.009, 95%CI: 0.004, 0.015) and femoral neck (ß = 0.007, 95%CI: 0.002, 0.013) BMDs, and the latter was negatively associated with BMDs with non-statistical significance. The WQS index constructed for the six vitamins was significantly related to total femur (ß = 0.010, 95%CI: 0.001, 0.018) and femoral neck (ß = 0.008, 95%CI: 0.001, 0.015) BMDs, and vitamins B12 and C weighted the most. The WQS index was inversely related to BMDs with non-statistical significance, and vitamins E and A weighted the most. CONCLUSION: Our findings suggested a positive association between water-soluble vitamin coexposure and BMD, and the association was mainly driven by vitamins B12 and C. Negative association between fat-soluble vitamin coexposure and BMD was indicated, mainly driven by vitamins E and A. An inverted L-shaped exposure relationship was found between vitamin C and BMD.


Assuntos
Densidade Óssea , Vitaminas , Adulto , Humanos , Densidade Óssea/fisiologia , Inquéritos Nutricionais , Estudos Transversais , Ácido Ascórbico , Água
2.
Ecotoxicol Environ Saf ; 263: 115256, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454484

RESUMO

The pathophysiology of osteoporosis (OP) is influenced by exposure to nonessential harmful metals and insufficient or excessive intake of necessary metals. Investigating multiple plasma metals, metabolites, and OP risk among older adults may reveal novel clues of underlying mechanisms for metal toxicity on bone mass. A total of 294 adults ≥ 55 years from Wuhan communities were included. Plasma concentrations of 23 metals and metabolites were measured via inductively coupled plasma-mass spectrometry and global metabolite detection. To investigate the relationships between plasma metals, OP risk, and OP-related metabolites, three different statistical techniques were used: generalized linear regression model, two-way orthogonal partial least-squares analysis (O2PLS), and weighted quantile sum (WQS). The mean ages were 66.82 and 66.21 years in OP (n = 115) and non-OP (n = 179) groups, respectively. Of all 2999 metabolites detected, 111 differential between-group members were observed. The OP risk decreased by 58.5% (OR=0.415, 95% CI: 0.237, 0.727) per quartile increment in the WQS index indicative of metal mixture exposure. Consistency remained for bone mineral density (BMD) measurements. The O2PLS model identified the top five OP-related metabolites, namely, DG(18:2_22:6), 3-phenoxybenzoic acid, TG(16:1_16:1_22:6), TG(16:0_16:0_20:4), and TG(14:1_18:2_18:3), contributing most to the joint covariation between the metal mixture and metabolites. Significant correlations between each of them and the metal mixture were found using WQS regression. Furthermore, the five metabolites mediated the associations of the metal mixtures, BMD, and OP risk. Our findings shed additional light on the mediation functions of plasma metabolites in the connection between multiple metal co-exposure and OP pathogenesis and offer new insights into the probable mechanisms underpinning the bone effects of the metal mixture.


Assuntos
Osteoporose , Humanos , Idoso , Osteoporose/induzido quimicamente , Densidade Óssea , Metais/toxicidade , Osso e Ossos , Modelos Lineares
3.
Angew Chem Int Ed Engl ; 62(52): e202316792, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37955415

RESUMO

Soft porous coordination polymers (PCPs) have the remarkable ability to recognize similar molecules as a result of their structural dynamics. However, their guest-induced gate-opening behaviors often lead to issues with selectivity and separation efficiency, as co-adsorption is nearly unavoidable. Herein, we report a strategy of a confined-rotational shutter, in which the rotation of pyridyl rings within the confined nanospace of a halogen-bonded coordination framework (NTU-88) creates a maximum aperture of 4.4 Å, which is very close to the molecular size of propyne (C3 H4 : 4.4 Å), but smaller than that of propylene (C3 H6 : 5.4 Å). This has been evidenced by crystallographic analyses and modelling calculations. The NTU-88o (open phase of activated NTU-88) demonstrates dedicated C3 H4 adsorption, and thereby leads to a sieving separation of C3 H4 /C3 H6 under ambient conditions. The integrated nature of high uptake ratio, considerable capacity, scalable synthesis, and good stability make NTU-88 a promising candidate for the feasible removal of C3 H4 from C3 H4 /C3 H6 mixtures. In principle, this strategy holds high potential for extension to soft families, making it a powerful tool for optimizing materials that can tackle challenging separations with no co-adsorption, while retaining the crucial aspect of high capacity.

4.
Inorg Chem ; 61(27): 10417-10424, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35767723

RESUMO

Methane, as the main component of natural gas, shale gas, and marsh gas, is regarded as an ideal clean energy to replace traditional fossil fuels and reduce carbon emissions. Porous materials with superior methane storage capacities are the key to the wide application of adsorbed natural gas technology in vehicle transportation. In this work, we applied a ligand tailoring strategy to a metal-organic framework (NOTT-101) to fine-tune its pore geometry, which was well characterized by gas and dye sorption measurements. High-pressure methane sorption isotherms revealed that the methane storage performance of the modified NOTT-101 can be effectively improved by decreasing the unusable uptake at 5 bar and increasing the total uptake under high pressures, achieving a substantially high volumetric methane storage working capacity of 190 cm3 (STP) cm-3 at 298 K and 5-80 bar.

5.
BMC Health Serv Res ; 22(1): 1080, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002820

RESUMO

BACKGROUND: Large-scale detection has great potential to bring benefits for containing the COVID-19 epidemic and supporting the government in reopening economic activities. Evaluating the true regional mobile severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus nucleic acid testing capacity is essential to improve the overall fighting performance against this epidemic and maintain economic development. However, such a tool is not available in this issue. We aimed to establish an evaluation index system for assessing the regional mobile SARS-CoV-2 virus nucleic acid testing capacity and provide suggestions for improving the capacity level. METHODS: The initial version of the evaluation index system was identified based on massive literature and expert interviews. The Delphi method questionnaire was designed and 30 experts were consulted in two rounds of questionnaire to select and revise indexes at all three levels. The Analytic Hierarchy Process method was used to calculate the weight of indexes at all three levels. RESULTS: The evaluation index system for assessing the regional mobile SARS-CoV-2 virus nucleic acid testing capacity, including 5 first-level indexes, 17 second-level indexes, and 90 third-level indexes. The response rates of questionnaires delivered in the two rounds of consultation were 100 and 96.7%. Furthermore, the authority coefficient of 30 experts was 0.71. Kendall's coordination coefficient differences were statistically significant (P < 0.001). The weighted values of capacity indexes were established at all levels according to the consistency test, demonstrating that 'Personnel team construction' (0.2046) came first amongst the five first-level indexes, followed by 'Laboratory performance building and maintenance' (0.2023), 'Emergency response guarantee' (0.1989), 'Information management system for nucleic acid testing resources' (0.1982) and 'Regional mobile nucleic acid testing emergency response system construction' (0.1959). CONCLUSION: The evaluation system for assessing the regional mobile SARS-CoV-2 virus nucleic acid testing capacity puts forward a specific, objective, and quantifiable evaluation criterion. The evaluation system can act as a tool for diversified subjects to find the weak links and loopholes. It also provides a measurable basis for authorities to improve nucleic acid testing capabilities.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , COVID-19/epidemiologia , China/epidemiologia , Técnica Delphi , Humanos , SARS-CoV-2/genética
6.
Molecules ; 27(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432104

RESUMO

Covalent organic frameworks (COFs), as a novel crystalline porous adsorbent, have been attracting significant attention for their synthesis and application exploration due to the advantages of designability, stability, and functionalization. Herein, through increasing the concentration of the acid catalyst, a facile solution-refluxing synthesis method was developed for the preparation of a three-dimensional dynamic COF material, COF-300, with high yields (>90%) and high space−time yields (>28 kg m−3 day−1). This synthesis method not only permits gram-scale synthesis, but also yields products that well maintain porosity and unique guest-dependent dynamic behavior. Moreover, the catalytic activity of COF-300 as a metal-free photocatalyst was explored for the first time. Under 365 nm ultra-violet light irradiation, COF-300 can effectively catalyze the dye degradation (>99%) in wastewater with good recyclability. By adding magnetic Fe3O4 nanoparticles into the solution-refluxing synthesis of COF-300, Fe3O4/COF-300 nanocomposites can be obtained and used as magnetically recyclable photocatalysts, demonstrating the superiority of this facile synthesis procedure. Our study provides new insights for the preparation of COF materials and a constructive exploration for their water treatment application.

7.
Inorg Chem ; 60(16): 11893-11896, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34339188

RESUMO

A solvothermal reaction of Zn(NO3)2 and 4-(1H-pyrazol-4-yl)benzoic acid (H2pba) with toluene (Tol) as the template yielded a porous coordination polymer, [Zn(pba)]·0.5Tol, possessing a three-dimensional (3D) fence-like coordination framework based on inclined two-dimensional (2D) fence-like coordination layers. By virtue of the classic deformation mode of the 2D/3D fence structures, the guest-free structure exhibits very large positive thermal expansion of 347 MK-1 and moderate negative thermal expansion of -63/-83 MK-1, which are remarkably enhanced to new records of 689 and -171/-249 MK-1, respectively, by inclusion of Tol.

8.
Inorg Chem ; 59(9): 6047-6052, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32314905

RESUMO

Solvothermal reactions of 3-(3-methylpyridin-4-yl)benzoic acid (Hmpba) with Mn(NO3)2 or Co(NO3)2 yielded isostructural porous coordination polymers, [Mn(mpba)2]·guest (MCF-56, 1·g) and [Co(mpba)2]·guest (MCF-57, 2·g), respectively. X-ray diffraction revealed that 1·g and 2·g possess similar one-dimensional ultramicroporous channels, and guest-free [Mn(mpba)2] (1') and [Co(mpba)2] (2') possess significantly and slightly contracted channels, respectively. Single-component C3H6/C3H8 adsorption isotherms and computational simulations showed the typical nonporous-to-porous structural transformations for 1', in which C3H6 exhibits a significantly lower threshold pressure, and the typical small-pore-to-large-pore structural transformations for 2', in which C3H6 exhibits a slightly lower threshold pressure. Mixture column breakthrough experiments showed that the C3H6/C3H8 separation performances of 2' are obviously better than those of 1', because the latter cannot adsorb C3H6 below the threshold pressure for pore opening, and the pore opened by C3H6 can adsorb C3H8.

9.
J Am Chem Soc ; 141(7): 3298-3303, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30657673

RESUMO

Guest-dependent dynamics having both crystal contraction and expansion upon inclusion of various guests is uncovered in a 3D covalent organic framework (COF) prepared with a facile and scalable method. A molecular-level understanding of how the framework adjusts the node geometry and molecular configuration to perform significant contraction and large amplitude expansion are resolved through synchrotron in-house powder X-ray diffraction (PXRD) and Rietveld refinements. We found that the COF adopts a contracted phase at ambient conditions upon capturing moisture and is also adaptive upon inclusion of organic solvents, which is highlighted by a large crystal expansion (as large as 50% crystallographic volume increment and a 3-fold channel size enlargement). With this new knowledge of the structural adaptability, the diverse responses and coherent switchability are thereby presented to pave the way to rational design and deliberate control of dynamic COFs.

10.
Nat Mater ; 17(12): 1128-1133, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397312

RESUMO

There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal-organic framework [Ca(C4O4)(H2O)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal-organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes.

11.
J Am Chem Soc ; 139(38): 13300-13303, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28870070

RESUMO

Mesoporous Zn4O(-COO)6-based metal-organic frameworks (MOFs), including UMCM-1, MOF-205, MUF-7a, and the newly synthesized MOFs, termed ST-1, ST-2, ST-3, and ST-4 (ST = ShanghaiTech University), have been systematically investigated for ultrahigh capacity methane storage. Exceptionally, ST-2 was found to have the highest deliverable capacity of 289 cm3STP/cm3 (567 mg/g) at 298 K and 5-200 bar, which surpasses all previously reported records held by porous materials. We illustrate that the fine-tuned mesoporosity is critical in further improving the deliverable capacities at ultrahigh pressure.

12.
Inorg Chem ; 56(7): 4238-4243, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28333452

RESUMO

Luminescent porous coordination polymers (PCPs) are emerging as attractive oxygen-sensing materials, but they are mostly based on single-wavelength luminometry. Here, we report a special mixed-lanthanide strategy for self-referenced ratiometric oxygen sensing. A series of isostructural, pure-lanthanide, or mixed-lanthanide PCPs, MCF-53(Tb/Eux), were synthesized by solvothermal reactions. Single-crystal X-ray diffraction revealed that MCF-53(Tb/Eux) is composed of complicated two-dimensional coordination networks, which interdigitate to form a three-dimensional supramolecular structure retaining one-dimensional ultra-micropores. MCF-53(Tb/Eux) can undergo multiple single-crystal to single-crystal structural transformations upon desorption/adsorption of coordinative and lattice guest molecules, and the lanthanide metal ions are partially exposed on the pore surface at the guest-free state. Tb(III) ions are not luminescent and only act as separators between Eu(III) ions, and the Tb(III)/Eu(III) mixing ratio can tune the relative emission intensities, luminescence lifetimes of the Eu(III) phosphorescence, and the ligand fluorescence, giving rise to not only ratiometric photoluminescence oxygen sensing but also tunable emission-color-changing ranges.

13.
Chem Soc Rev ; 43(16): 5789-814, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24971601

RESUMO

X-Ray single-crystal diffraction has been the most straightforward and important technique in structural determination of crystalline materials for understanding their structure-property relationships. This powerful tool can be used to directly visualize the precise and detailed structural information of porous coordination polymers or metal-organic frameworks at different states, which are unique for their flexible host frameworks compared with conventional adsorbents. With a series of selected recent examples, this review gives a brief overview of single-crystal X-ray diffraction studies and single-crystal to single-crystal transformations of porous coordination polymers under various chemical and physical stimuli such as solvent and gas sorption/desorption/exchange, chemical reaction and temperature change.

14.
J Cachexia Sarcopenia Muscle ; 15(3): 897-906, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38468152

RESUMO

BACKGROUND: Systemic inflammation and frailty have been implicated in osteoporosis (OP) and fracture risks; however, existing evidence remains limited and inconclusive. This study aimed to assess the associations of systemic inflammation and frailty phenotype with incident OP and fracture and to evaluate the mediating role of frailty phenotype. METHODS: The present study analysed data from the UK Biobank, a comprehensive and representative dataset encompassing over 500 000 individuals from the general population. Baseline peripheral blood cell counts were employed to calculate the systemic inflammation markers, including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII). Frailty phenotype was assessed using five criteria, defined as frail (≥3 items met), pre-frail (1-2 items met) and non-frail (0 items met). OP and fracture events were confirmed through participants' health-related records. Multivariable linear and Cox regression models were utilized, along with mediation analysis. RESULTS: Increased systemic inflammation was associated with increased risks of OP and fracture. The corresponding hazard ratios and 95% confidence intervals (CIs) for OP risk per standard deviation increase in the log-transformed NLR, PLR and SII were 1.113 (1.093-1.132), 1.098 (1.079-1.118) and 1.092 (1.073-1.111), and for fracture risk, they were 1.066 (1.051-1.082), 1.059 (1.044-1.075) and 1.073 (1.058-1.089), respectively. Compared with the non-frail individuals, the pre-frail and frail ones showed an elevated OP risk by 21.2% (95% CI: 16.5-26.2%) and 111.0% (95% CI: 98.1-124.8%), respectively, and an elevated fracture risk by 6.1% (95% CI: 2.8-9.5%) and 38.2% (95% CI: 30.7-46.2%), respectively. The systemic inflammation level demonstrated a positive association with frailty, with ß (95% CI) of 0.034 (0.031-0.037), 0.026 (0.023-0.029) and 0.008 (0.005-0.011) in response to per standard deviation increment in log-transformed SII, NLR and PLR, respectively. The frailty phenotype mediated the association between systemic inflammation and OP/fracture risk. Subgroup and sensitivity analyses confirmed the robustness of these findings. CONCLUSIONS: Systemic inflammation and frailty phenotype are independently linked to increased risks of OP and fracture. The frailty phenotype partially mediates the association between systemic inflammation and osteoporotic traits. These results highlight the significance of interventions targeting systemic inflammation and frailty in OP and fracture prevention and management.


Assuntos
Fraturas Ósseas , Fragilidade , Inflamação , Osteoporose , Fenótipo , Humanos , Osteoporose/epidemiologia , Inflamação/sangue , Inflamação/complicações , Feminino , Fragilidade/complicações , Masculino , Idoso , Estudos Prospectivos , Fraturas Ósseas/epidemiologia , Pessoa de Meia-Idade , Biomarcadores , Fatores de Risco , Idoso de 80 Anos ou mais
15.
J Adv Res ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431123

RESUMO

INTRODUCTION: The growing prevalence of osteoporosis (OP) in an aging global population presents a significant public health concern. Tobacco smoke negatively affects bone turnover, leading to reduced bone mass and heightened OP and fracture risk. However, the impact of early-life tobacco smoke exposure on later-life OP risk remains unclear. OBJECTIVES: This study was to explore the effects of early-life tobacco smoke exposure on incident OP risk in later life. The mediating role of telomere length (TL) and the interaction with genetic predisposition were also studied. METHODS: Data on in utero tobacco smoke exposure (IUTSE) status and age of tobacco use initiation from the UK Biobank were used to estimate early-life tobacco smoke exposure. Incident OP cases were identified according to health-related records. Linear, Cox, and Laplace regression models were mainly used for data analysis. RESULTS: Individuals with IUTSE showed a higher OP risk [hazard ratio (HR): 1.06, 95 % confidence interval (CI): 1.01, 1.11] and experienced earlier OP onset by 0.30 years [50th percentile difference = -0.30, 95 % CI: -0.51, -0.09] compared to those without. Participants initiating tobacco smoke in childhood, adolescence, and adulthood had 1.41 times (95 % CI: 1.23, 1.61), 1.17 times (95 % CI:1.10, 1.24), and 1.14 times (95 % CI: 1.07, 1.20) the risk of OP, respectively, compared to never smokers. They also experienced earlier OP onset by 2.16, 0.95, and 0.71 years, sequentially. The TL significantly mediated the early-life tobacco exposure and OP association. Significant joint and interactive effects were detected between early-life tobacco smoke exposure and genetic elements. CONCLUSIONS: Our findings implicate that early-life tobacco smoke exposure elevates the later-life OP risk, mediated by telomere length and interplayed with genetic predisposition. These findings highlight the importance of early-life intervention against tobacco smoke exposure and ageing status for precise OP prevention, especially in individuals with a high genetic risk.

16.
Environ Sci Pollut Res Int ; 30(55): 117201-117213, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864687

RESUMO

Few studies have focused on the effects of multiple metal mixtures on bone health and the underlying mechanisms related to alterations in the gut microbiota. This study aimed to examine the potential roles of gut microbiota alterations in metal mixtures and their association with osteoporosis traits. Adults aged ≥ 55 years were recruited from two community healthcare centers in Wuhan City during 2016-2019. The plasma concentrations of six metals (zinc, iron, selenium, lead, cadmium, and arsenic) were measured using an inductively coupled plasma mass spectrometer. The k-means clustering method was employed to explore the exposure profiles of metal mixtures for all participants. 16S rRNA gene sequencing was used to profile the gut microbiota of participants. Combining these results with those of our previous study, we identified overlapping taxa and evaluated their potential roles. A total of 806 participants (516 females), with an average age of 67.36 years were included. The participants were grouped into three clusters using k-means clustering: Cluster 1 (n = 458), Cluster 2 (n = 199), and Cluster 3 (n = 149). The high-exposure group for iron, zinc, lead, and cadmium (Cluster 3) showed a negative association with lumbar spine 1-4 bone mineral density (BMD). A total of 201 individuals (121 females) underwent sequencing of the gut microbiota. Both alpha and beta diversities were statistically different among the three groups. Bacteroidaceae, Lachnospiraceae, Bifidobacteriaceae, Bacteroides, and Lachnospiraceae_incertae_sedis were identified as overlapping taxa associated with the metal mixtures and BMD. Interaction analysis revealed that Cluster 3 interacted with Bacteroidaceae/Bacteroides, resulting in a positive effect on LS1-4 BMD (ß = 0.358 g/cm2, 95% CI: 0.047 to 0.669, P = 0.025). Our findings indicate associations between multiple metal mixtures and BMD as well as gut microbiota alterations. Exploring the interaction between metal mixtures and the gut microbiota provides new perspectives for the precise prevention and treatment of osteoporosis.


Assuntos
Microbioma Gastrointestinal , Osteoporose , Adulto , Feminino , Humanos , Idoso , Densidade Óssea , Cádmio , RNA Ribossômico 16S/genética , Osteoporose/epidemiologia , Metais , Zinco , Ferro , Estudos Epidemiológicos
17.
Menopause ; 30(5): 529-538, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36944153

RESUMO

OBJECTIVE: Osteoporosis is a skeletal disease characterized by low bone mass, reduced bone strength, and increased fracture risk. We aimed to investigate the association between combined dietary antioxidant intake and the likelihood of osteoporosis in premenopausal and postmenopausal women, based on data from the National Health and Nutrition Examination Survey. METHODS: Nutrient intake data were obtained using two 24-hour recalls. Composite dietary antioxidant index (CDAI), which refers to the intake amounts of ß-carotene, vitamin A, vitamin C, vitamin E, selenium, zinc, copper, and iron, was then constructed. Prevalent osteoporosis was defined according to bone mineral density T scores of ≤ -2.5 and self-reports. Multiple logistic and Poisson regression models were used for association analyses. RESULTS: A total of 3,418 participants (1,157 premenopausal and 2,261 postmenopausal women) 40 years or older were included, 776 (22.70%) of whom had prevalent osteoporosis. In terms of individual nutrients, postmenopausal women in the highest CDAI quartiles for dietary ß-carotene, vitamin A, vitamin C, and iron intakes had a low likelihood of osteoporosis. Regarding the CDAI-osteoporosis association, postmenopausal women in the highest quartile were less likely to have osteoporosis (OR Q3 vs Q1 , 0.64; 95% CI, 0.43-0.96; OR Q4 vs Q1 , 0.56; 95% CI, 0.35-0.89; P for trend = 0.013), after controlling for covariates. CONCLUSIONS: CDAI was negatively associated with the likelihood of osteoporosis in postmenopausal women. Our findings suggest that the combined intake of antioxidant nutrients can help reduce the likelihood of osteoporosis in women.


Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Estados Unidos/epidemiologia , Antioxidantes , Vitamina A , beta Caroteno , Inquéritos Nutricionais , Pós-Menopausa , Densidade Óssea , Osteoporose/epidemiologia , Osteoporose/prevenção & controle , Vitaminas , Dieta , Ácido Ascórbico , Ingestão de Alimentos , Ferro , Osteoporose Pós-Menopausa/epidemiologia , Osteoporose Pós-Menopausa/prevenção & controle
18.
Microorganisms ; 11(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38137966

RESUMO

Bacteriophages, or phages, can be used as natural biological control agents to eliminate pathogenic bacteria during aquatic product cultivation. Samples were collected from seafood aquaculture water and aquaculture environmental sewage, and phage VA5 was isolated using the double-layer agar plate method, with Vibrio alginolyticus as the host bacteria. The purified phage strain was subjected to genome sequencing analysis and morphological observation. The optimal multiplicity of infection (MOI), the one-step growth curve, temperature stability, and pH stability were analyzed. Phage VA5 was observed to have a long tail. Whole-genome sequencing revealed that the genome was circular dsDNA, with 35,866 bp length and 46% G+C content. The optimal MOI was 1, the incubation period was 20 min, the outbreak period was 30 min, and the cleavage amount was 92.26 PFU/cell. The phage showed good activity at -20 °C, 70 °C, and pH 2-10. Moreover, the phage VA5 exhibited significant inhibitory effects on V. alginolyticus-infected shrimp culture. The isolated phage VA5 has a wide range of host bacteria and is a good candidate for biological control of pathogenic bacteria.

19.
Environ Sci Pollut Res Int ; 30(33): 80001-80013, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37289393

RESUMO

Exposure to phenols, phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) can harm the skeleton. However, data about the joint effects of these chemicals' mixture on bone health are limited. The final analysis involved 6766 participants aged over 20 years recruited from the National Health and Nutrition Examination Survey. Generalized linear regression, weighted quantile sum (WQS) regression, Bayesian kernel machine regression (BKMR), and quantile g-computation (qgcomp) were performed to investigate the association of the urinary levels of chemicals (three phenols, two chlorophenol pesticides, nine phthalates, and six polycyclic aromatic hydrocarbon [PAH] metabolites) with bone mineral density (BMD) measurements and osteoporosis (OP) risk. Generalized linear regression identified that benzophenone-3, 2,4-dichlorophenol, mono-n-butyl phthalate, 1-napthol, 3-fluorene, 2-fluorene, and 1-phenanthrene were significantly associated with lower BMD and increased OP risk. The WQS index was negatively associated with total femur, femoral neck, and lumbar spine vertebra 1 (L1) BMD among all the participants, with corresponding ß (95% confidence interval) values of -0.028 g/cm2 (-0.040, -0.017), -0.015 g/cm2 (-0.025, -0.004), and -0.018 g/cm2 (-0.033, -0.003). In the BKMR analysis, the overall effect of the mixture was significantly associated with femoral neck BMD among males and OP risk among females. The qgcomp model found a significant association between co-exposure and L1 BMD among all the participants and among males. Our study presents compelling epidemiological evidence that co-exposure to phenols, chlorophenol pesticides, phthalates, and PAHs is associated with reduced BMD and elevated OP risk. It provides epidemiologic evidence for the detrimental effects of these chemicals on bone health.


Assuntos
Clorofenóis , Praguicidas , Ácidos Ftálicos , Hidrocarbonetos Policíclicos Aromáticos , Masculino , Feminino , Humanos , Adulto , Densidade Óssea , Fenol/farmacologia , Praguicidas/farmacologia , Inquéritos Nutricionais , Teorema de Bayes , Ácidos Ftálicos/urina , Modelos Estatísticos , Fenóis/farmacologia , Fluorenos/farmacologia , Colo do Fêmur
20.
Chemosphere ; 329: 138650, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037349

RESUMO

OBJECTIVES: Human exposure to various endocrine disrupting chemicals (EDCs) is widespread and long-lasting. The primary objective of this study was to prospectively evaluate the association of combined exposure of phenols, chlorophenol pesticides, phthalate and polycyclic aromatic hydrocarbons (PAHs) and mortality risk in a representative US population. METHODS: The data on urinary levels of phenols, chlorophenol pesticides, phthalates, and PAH metabolites, were collected from participants aged ≥20 years in six rounds of the National Health and Nutrition Examination Survey (NHANES) (2003-2014). NHANES-linked death records up to December 31, 2015 were used to ascertain mortality status and cause of death. Cox proportional hazards and competing risk models were mainly used for chemical and mortality risk association analysis. The weighted quantile sum (WQS) regression and the least absolute shrinkage and selection operator regression were employed to estimate the association between EDC co-exposure and mortality risk. RESULTS: High levels of mono-n-butyl phthalate, monobenzyl phthalate, and 1-napthol were significantly associated with increased risk of all cause, cardiovascular disease (CVD) and cancer mortality among all participants. WQS index was associated with the risks of all-cause (hazard ratio [HR] = 1.389, 95%CI: 1.155-1.669) and CVD mortality (HR = 1.925, 95%CI: 1.152-3.216). High co-exposure scores were associated with elevated all-cause (HR = 2.842, 95% CI: 1.2.094-3.858), CVD (HR = 1.855, 95% CI: 1.525-2.255), and cancer mortality risks (HR = 2.961, 95% CI: 1.468-5.972). The results of subgroup analysis, competing risk model, and sensitivity analysis were generally consistent with the findings from the main analyses, indicating the robustness of our findings. CONCLUSIONS: This study provided the first epidemiological evidence that co-exposure to EDC at fairly low levels contributed to elevated mortality risk among US adults. The underlying mechanisms for the effects of EDC co-exposure on human health are worthy of future exploration.


Assuntos
Doenças Cardiovasculares , Clorofenóis , Poluentes Ambientais , Neoplasias , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Humanos , Fenóis/toxicidade , Fenóis/urina , Estudos Prospectivos , Inquéritos Nutricionais , Poluentes Ambientais/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA