Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2383-2390, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899103

RESUMO

We investigated the effects of maize straw and its biochar application on soil organic carbon chemical composition, the abundance of carbon degradation genes (cbhI) and the composition of cbhI gene community in a Moso bamboo forest, to provide the theoretical and scientific basis for enhancing carbon sequestration. We conducted a one-year field experiment in a subtropical Moso bamboo forest with three treatments: control (0 t C·hm-2), maize straw (5 t C·hm-2), and maize straw biochar (5 t C·hm-2). Soil samples were collected at the 3rd and 12th months after the treatment. Soil organic carbon chemical composition, the abundance and community composition of cbhI gene were determined by solid-state 13C NMR, real-time fluorescence quantitative PCR, and high-throughput sequencing, respectively. The results showed that compared with the control, maize straw treatment significantly increased the content of O-alkyl C and decreased aromatic C content, while maize straw biochar treatment showed an opposite effect. Maize straw treatment significantly increased the abundance of cbhI gene and the relative abundance of Penicillium, Gaeumannomyces and Marasmius. However, maize straw biochar treatment reduced the abundance of this gene. The relative abundance of dominant cbhI in soils was positively correlated with the content of O-alkyl C and negatively correlated with the content of aromatic C. Results of redundancy analysis showed that maize straw treatment had a significant effect on the microbial community composition of cbhI gene by changing soil O-alkyl C content, while maize straw biochar affected the microbial community composition of cbhI gene by changing soil pH, organic carbon, and aromatic C content. Maize straw biochar treatment was more effective in increasing soil organic carbon stability and reducing microbial activity associated with carbon degradation in the subtropical Moso bamboo forest ecosystem compared with maize straw treatment. Therefore, the application of biochar has positive significance for maintaining soil carbon storage in subtropical forest ecosystems.


Assuntos
Carbono , Microbiota , Carbono/análise , Zea mays , Solo/química , Carvão Vegetal/química , Poaceae , Florestas , Compostos Orgânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA