Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386058

RESUMO

Although clinical reports have highlighted association of the deacetylase sirtuin 1 (SIRT1) gene with anxiety, its exact role in the pathogenesis of anxiety disorders remains unclear. The present study was designed to explore whether and how SIRT1 in the mouse bed nucleus of the stria terminalis (BNST), a key limbic hub region, regulates anxiety. In a chronic stress model to induce anxiety in male mice, we used site- and cell-type-specific in vivo and in vitro manipulations, protein analysis, electrophysiological and behavioral analysis, in vivo MiniScope calcium imaging and mass spectroscopy, to characterize possible mechanism underlying a novel anxiolytic role for SIRT1 in the BNST. Specifically, decreased SIRT1 in parallel with increased corticotropin-releasing factor (CRF) expression was found in the BNST of anxiety model mice, whereas pharmacological activation or local overexpression of SIRT1 in the BNST reversed chronic stress-induced anxiety-like behaviors, downregulated CRF upregulation, and normalized CRF neuronal hyperactivity. Mechanistically, SIRT1 enhanced glucocorticoid receptor (GR)-mediated CRF transcriptional repression through directly interacting with and deacetylating the GR co-chaperone FKBP5 to induce its dissociation from the GR, ultimately downregulating CRF. Together, this study unravels an important cellular and molecular mechanism highlighting an anxiolytic role for SIRT1 in the mouse BNST, which may open up new therapeutic avenues for treating stress-related anxiety disorders.

2.
Bioinformatics ; 38(24): 5329-5339, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36303315

RESUMO

MOTIVATION: Large-scale neuronal morphologies are essential to neuronal typing, connectivity characterization and brain modeling. It is widely accepted that automation is critical to the production of neuronal morphology. Despite previous survey papers about neuron tracing from light microscopy data in the last decade, thanks to the rapid development of the field, there is a need to update recent progress in a review focusing on new methods and remarkable applications. RESULTS: This review outlines neuron tracing in various scenarios with the goal to help the community understand and navigate tools and resources. We describe the status, examples and accessibility of automatic neuron tracing. We survey recent advances of the increasingly popular deep-learning enhanced methods. We highlight the semi-automatic methods for single neuron tracing of mammalian whole brains as well as the resulting datasets, each containing thousands of full neuron morphologies. Finally, we exemplify the commonly used datasets and metrics for neuron tracing bench testing.


Assuntos
Aprendizado Profundo , Microscopia , Animais , Microscopia/métodos , Imageamento Tridimensional/métodos , Algoritmos , Neurônios , Automação , Mamíferos
3.
BMC Biol ; 20(1): 77, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351101

RESUMO

BACKGROUND: Tissue-clearing techniques have recently been developed to make tissues transparent for three-dimensional (3D) imaging at different scales, including single-cell resolution. However, current tissue-clearing workflows have several disadvantages, including complex protocols, time-consuming application, and fluorescence quenching. Additionally, they can be used mainly for clearing larger-volume samples, preventing wide and easy applicability in conventional experimental approaches. In this study, we aimed to develop a versatile, fast, and convenient method for clearing thin and semi-thick samples, which can be used for three-dimensional imaging of experimental or even clinical samples. RESULTS: We developed an alkaline solution (AKS) containing a combination of 2,2'-thiodiethanol (TDE), DMSO, D-sorbitol, and Tris for tissue clearing, as the alkaline environment is suitable for maintaining the fluorescence of most commonly used fluorescence protein GFP and its variants, and tested its clearing effect on samples from mice and human brains. We assessed the clearing speed, the preservation of fluorescence protein and dyes, and the imaging depth and quality. The results showed that AKS treatment rapidly cleared 300-µm-thick brain slices and 1-mm-thick slices from different organs within 5 min and 1 h, respectively. Moreover, AKS was compatible with a variety of fluorescence proteins and dyes. Most importantly, AKS enhanced the fluorescence of YFP, in contrast to the majority of existing tissue-clearing methods which reduce the fluorescence intensity of fluorescent proteins. Using AKS, we performed long-time high-resolution imaging of weak fluorescent protein-labelled tissues, long-distance fibre tracking, larger-scale 3D imaging and cell counting of the entire brain area, neural circuit tracing, 3D neuromorphic reconstruction, and 3D histopathology imaging. CONCLUSIONS: AKS can be used for simple and rapid clearing of samples from mice and human brains and is widely compatible with a variety of fluorescent dyes. Therefore, AKS has great potential to be used as a broad tissue-clearing reagent for biological optical imaging, especially for time-sensitive experiments.


Assuntos
Encéfalo , Imageamento Tridimensional , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento Tridimensional/métodos , Camundongos , Microscopia de Fluorescência/métodos , Neuroimagem/métodos , Imagem Óptica/métodos
4.
J Anat ; 240(3): 528-540, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34642936

RESUMO

Sex differences in behaviour partly arise from the sexual dimorphism of brain anatomy between males and females. However, the sexual dimorphism of the tree shrew brain is unclear. In the present study, we examined the detailed distribution of vasoactive intestinal polypeptide-immunoreactive (VIP-ir) neurons and fibres in the suprachiasmatic nucleus (SCN) and VIP-ir fibres in the bed nucleus of the stria terminalis (BST) of male and female tree shrews. The overall volume of the SCN in male tree shrews was comparable with that in females. However, males showed a significantly higher density of VIP-ir cells and fibres in the SCN than females. The shape of the VIP-stained area in coronal sections was arched, elongated or oval in the lateral division (STL) and the anterior part of the medial division (STMA) of the BST and oval or round in the posterior part of the medial division of the BST (STMP). The volume of the VIP-stained BST in male tree shrews was similar to that in females. The overall distribution of VIP-ir fibres was similar between the sexes throughout the BST except within the STMA, where darkly stained fibres were observed in males, whereas lightly stained fibres were observed in females. Furthermore, male tree shrews showed a significantly higher intensity of Nissl staining in the medial preoptic area (MPA) and the ventral part of the medial division of the BST than females. These findings are the first to reveal sexual dimorphism in the SCN, BST and MPA of the tree shrew brain, providing neuroanatomical evidence of sexual dimorphism in these regions related to their roles in sex differences in physiology and behaviour.


Assuntos
Área Pré-Óptica , Núcleos Septais , Animais , Feminino , Imuno-Histoquímica , Masculino , Caracteres Sexuais , Núcleo Supraquiasmático , Tupaiidae
5.
PLoS Biol ; 17(8): e3000417, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31469831

RESUMO

Threatening sounds can elicit a series of defensive behavioral reactions in animals for survival, but the underlying neural substrates are not fully understood. Here, we demonstrate a previously unexplored neural pathway in mice that projects directly from the auditory cortex (ACx) to the lateral periaqueductal gray (lPAG) and controls noise-evoked defensive behaviors. Electrophysiological recordings showed that the lPAG could be excited by a loud noise that induced an escape-like behavior. Trans-synaptic viral tracing showed that a great number of glutamatergic neurons, rather than GABAergic neurons, in the lPAG were directly innervated by those in layer V of the ACx. Activation of this pathway by optogenetic manipulations produced a behavior in mice that mimicked the noise-evoked escape, whereas inhibition of the pathway reduced this behavior. Therefore, our newly identified descending pathway is a novel neural substrate for noise-evoked escape and is involved in controlling the threat-related behavior.


Assuntos
Córtex Auditivo/fisiologia , Reação de Fuga/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Animais , Córtex Auditivo/metabolismo , Percepção Auditiva/fisiologia , Comportamento Animal/fisiologia , Mecanismos de Defesa , Aminoácidos Excitatórios/fisiologia , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Optogenética/métodos , Substância Cinzenta Periaquedutal/fisiologia , Som
6.
Appl Opt ; 61(28): 8204-8211, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256132

RESUMO

A time-resolved two-color laser induced fluorescence method is proposed for simultaneous 2D temperature and velocity measurements for complex multi-phase flow. A temperature sensitive dye molecule is used for temperature and velocity tagging at the same time. To effectively eliminate the temperature deviation due to image misalignment, which is commonly seen at the multi-phase boundary, a one-color-camera system is proposed that can decrease the temperature deviation from 30°C-50°C to <10∘C near the two-phase flow boundary with a high contrast ratio (0.41-0.43). Considering the strong influence of the thermal diffusion and convection processes to photo luminescence images' intensities, which can lead to significant velocity calculation deviation, a physically constrained temperature tagging method is introduced. Through both a theoretical model and measurement results, the relative velocity deviation can be decreased from 77.6% to <10% by this method. This work can effectively improve the temperature and velocity measurement accuracy of a temperature sensitive particle/molecule tagging method in multi-phase flow with strong coupling of temperature and velocity.

7.
Proc Natl Acad Sci U S A ; 116(9): 3799-3804, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808765

RESUMO

Obsessive-compulsive disorder (OCD) affects ∼1 to 3% of the world's population. However, the neural mechanisms underlying the excessive checking symptoms in OCD are not fully understood. Using viral neuronal tracing in mice, we found that glutamatergic neurons from the basolateral amygdala (BLAGlu) project onto both medial prefrontal cortex glutamate (mPFCGlu) and GABA (mPFCGABA) neurons that locally innervate mPFCGlu neurons. Next, we developed an OCD checking mouse model with quinpirole-induced repetitive checking behaviors. This model demonstrated decreased glutamatergic mPFC microcircuit activity regulated by enhanced BLAGlu inputs. Optical or chemogenetic manipulations of this maladaptive circuitry restored the behavioral response. These findings were verified in a mouse functional magnetic resonance imaging (fMRI) study, in which the BLA-mPFC functional connectivity was increased in OCD mice. Together, these findings define a unique BLAGlu→mPFCGABA→Glu circuit that controls the checking symptoms of OCD.


Assuntos
Tonsila do Cerebelo/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Neurônios/metabolismo , Transtorno Obsessivo-Compulsivo/metabolismo , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Animais , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Humanos , Imageamento por Ressonância Magnética , Camundongos , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Neurônios/patologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia
8.
BMC Biol ; 19(1): 47, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722214

RESUMO

BACKGROUND: Corticotropin-releasing hormone (CRH) is an important neuromodulator that is widely distributed in the brain and plays a key role in mediating stress responses and autonomic functions. While the distribution pattern of fluorescently labeled CRH-expressing neurons has been studied in different transgenic mouse lines, a full appreciation of the broad diversity of this population and local neural connectivity can only come from integration of single-cell morphological information as a defining feature. However, the morphologies of single CRH neurons and the local circuits formed by these neurons have not been acquired at brain-wide and dendritic-scale levels. RESULTS: We screened the EYFP-expressing CRH-IRES-Cre;Ai32 mouse line to reveal the morphologies of individual CRH neurons throughout the whole mouse brain by using a fluorescence micro-optical sectioning tomography (fMOST) system. Diverse dendritic morphologies and projection fibers of CRH neurons were found in various brain regions. Follow-up reconstructions showed that hypothalamic CRH neurons had the smallest somatic volumes and simplest dendritic branches and that CRH neurons in several brain regions shared a common bipolar morphology. Further investigations of local CRH neurons in the medial prefrontal cortex unveiled somatic depth-dependent morphologies of CRH neurons that exhibited three types of mutual connections: basal dendrites (upper layer) with apical dendrites (layer 3); dendritic-somatic connections (in layer 2/3); and dendritic-dendritic connections (in layer 4). Moreover, hypothalamic CRH neurons were classified into two types according to their somatic locations and characteristics of dendritic varicosities. Rostral-projecting CRH neurons in the anterior parvicellular area had fewer and smaller dendritic varicosities, whereas CRH neurons in the periventricular area had more and larger varicosities that were present within dendrites projecting to the third ventricle. Arborization-dependent dendritic spines of CRH neurons were detected, among which the most sophisticated types were found in the amygdala and the simplest types were found in the hypothalamus. CONCLUSIONS: By using the CRH-IRES-Cre;Ai32 mouse line and fMOST imaging, we obtained region-specific morphological distributions of CRH neurons at the dendrite level in the whole mouse brain. Taken together, our findings provide comprehensive brain-wide morphological information of stress-related CRH neurons and may facilitate further studies of the CRH neuronal system.


Assuntos
Encéfalo/citologia , Hormônio Liberador da Corticotropina/metabolismo , Neurônios/citologia , Animais , Encéfalo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Análise de Célula Única
9.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408934

RESUMO

Obtaining fine neuron morphology and connections data is extraordinarily useful in understanding the brain's functionality. Golgi staining is a widely used method for revealing neuronal morphology. However, Golgi-Cox-stained tissue is difficult to image in three dimensions and lacks cell-type specificity, limiting its use in neuronal circuit studies. Here, we describe an expansion-based method for rapidly clearing Golgi-Cox-stained tissue. The results show that 1 mm thick Golgi-Cox-stained tissue can be cleared within 6 hours with a well preserved Golgi-Cox-stained signal. At the same time, we found for the first time that the cleared Golgi-Cox-stained samples were compatible with three-dimensional (3D) immunostaining and multi-round immunostaining. By combining the Golgi-Cox staining with tissue clearing and immunostaining, Golgi-Cox-stained tissue could be used for large-volume 3D imaging, identification of cell types of Golgi-Cox-stained cells, and reconstruction of the neural circuits at dendritic spines level. More importantly, these methods could also be applied to samples from human brains, providing a tool for analyzing the neuronal circuit of the human brain.


Assuntos
Complexo de Golgi , Neurônios , Encéfalo , Humanos , Imageamento Tridimensional/métodos , Coloração e Rotulagem
10.
J Neurosci ; 40(12): 2519-2537, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32054675

RESUMO

The bed nucleus of the stria terminalis (BNST) is a forebrain region highly responsive to stress that expresses corticotropin-releasing hormone (CRH) and is implicated in mood disorders, such as anxiety. However, the exact mechanism by which chronic stress induces CRH-mediated dysfunction in BNST and maladaptive behaviors remains unclear. Here, we first confirmed that selective acute optogenetic activation of the oval nucleus BNST (ovBNST) increases maladaptive avoidance behaviors in male mice. Next, we found that a 6 week chronic variable mild stress (CVMS) paradigm resulted in maladaptive behaviors and increased cellular excitability of ovBNST CRH neurons by potentiating mEPSC amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential) in ex vivo slices. CVMS also increased c-fos+ cells in ovBNST following handling. We next investigated potential molecular mechanism underlying the electrophysiological effects and observed that CVMS increased CRH+ and pituitary adenylate cyclase-activating polypeptide+ (PACAP; a CRH upstream regulator) cells but decreased striatal-enriched protein tyrosine phosphatase+ (a STEP CRH inhibitor) cells in ovBNST. Interestingly, the electrophysiological effects of CVMS were reversed by CRHR1-selective antagonist R121919 application. CVMS also activated protein kinase A (PKA) in BNST, and chronic infusion of the PKA-selective antagonist H89 into ovBNST reversed the effects of CVMS. Coadministration of the PKA agonist forskolin prevented the beneficial effects of R121919. Finally, CVMS induced an increase in surface expression of phosphorylated GluR1 (S845) in BNST. Collectively, these findings highlight a novel and indispensable stress-induced role for PKA-dependent CRHR1 signaling in activating BNST CRH neurons and mediating maladaptive behaviors.SIGNIFICANCE STATEMENT Chronic stress and acute activation of oval bed nucleus of the stria terminalis (ovBNST) induces maladaptive behaviors in rodents. However, the precise molecular and electrophysiological mechanisms underlying these effects remain unclear. Here, we demonstrate that chronic variable mild stress activates corticotropin-releasing hormone (CRH)-associated stress signaling and CRH neurons in ovBNST by potentiating mEPSC amplitude and decreasing M-current in male mice. These electrophysiological alterations and maladaptive behaviors were mediated by BNST protein kinase A-dependent CRHR1 signaling. Our results thus highlight the importance of BNST CRH dysfunction in chronic stress-induced disorders.


Assuntos
Adaptação Psicológica , Hormônio Liberador da Corticotropina/fisiologia , Núcleos Septais/fisiologia , Transdução de Sinais/fisiologia , Estresse Psicológico/psicologia , Animais , Doença Crônica , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Genes fos , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Canais de Potássio/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores
11.
Opt Express ; 29(10): 14883-14893, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985200

RESUMO

Temporal and spatial evolution of temperature in femtosecond laser filamentation is investigated using planar Rayleigh scattering combined with optical flow algorithm, the corresponding mechanism is analyzed. The temperature increases sharply with a characteristic time of 4.53µs and reach a maximum value of 418 K within 1∼10µs, then decreases slowly to around 300 K with a characteristic time of 136µs. While the temperature first diffuses rapidly in the radial direction and then diffuses very slowly, an obvious step is observed around 2µs. The mechanism of heat transfer is the result of energy exchange between electron and heavy particles and heat conduction. Within 1 ns to 10µs, molecules obtain energy continuously due to collision with electrons, which is much larger than the energy loss due to thermal conduction, leading to rise of gas temperature and the high-speed movement of the filament edges. After 10µs, thermal conduction becomes the dominant factor, resulting gas temperature decreasing and slower movement of the filament edges.

12.
Acta Neuropathol ; 142(6): 1045-1064, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536123

RESUMO

Since the discovery of ketamine anti-depressant effects in last decade, it has effectively revitalized interest in investigating excitatory synapses hypothesis in the pathogenesis of depression. In the present study, we aimed to reveal the excitatory synaptic regulation of corticotropin-releasing hormone (CRH) neuron in the hypothalamus, which is the driving force in hypothalamic-pituitary-adrenal (HPA) axis regulation. This study constitutes the first observation of an increased density of PSD-93-CRH co-localized neurons in the hypothalamic paraventricular nucleus (PVN) of patients with major depression. PSD-93 overexpression in CRH neurons in the PVN induced depression-like behaviors in mice, accompanied by increased serum corticosterone level. PSD-93 knockdown relieved the depression-like phenotypes in a lipopolysaccharide (LPS)-induced depression model. Electrophysiological data showed that PSD-93 overexpression increased CRH neurons synaptic activity, while PSD-93 knockdown decreased CRH neurons synaptic activity. Furthermore, we found that LPS induced increased the release of glutamate from microglia to CRH neurons resulted in depression-like behaviors using fiber photometry recordings. Together, these results show that PSD-93 is involved in the pathogenesis of depression via increasing the synaptic activity of CRH neurons in the PVN, leading to the hyperactivity of the HPA axis that underlies depression-like behaviors.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Depressão/metabolismo , Guanilato Quinases/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Transmissão Sináptica/fisiologia , Regulação para Cima
13.
Nanomedicine ; 34: 102393, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33862288

RESUMO

Several advances in nanomedicine have been accompanied by rising concerns about the bioaccumulation and toxicity of gold nanoparticles (AuNPs). Here, we assessed the in vivo fate of diversely sized AuNPs that were injected into mice as a computed tomography contrast agent and examined with multi-scale analyses across the organ, tissue, cell, and subcellular levels. After focusing on the strong detected accumulation in livers, our data revealed a set of three clear, exposure-time-dependent patterns based on i) AuNPs deposit morphology and ii) readily identifiable phenotypes for AuNP-impacted subcellular vesicles. Importantly, we detected no obvious differences in liver function, liver cell apoptosis, or autophagy upon exposure to AuNPs. Thus, our study illustrates an accessible experimental and high-resolution data interpretation framework for quickly obtaining and contextualizing informative trends about any AuNP-triggered patterns of subcellular damage in nanomedicine studies; these can help guide cytotoxity and safety testing of diagnostic nanomedical technologies.


Assuntos
Ouro/metabolismo , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/química , Frações Subcelulares/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ouro/química , Fígado/metabolismo , Testes de Função Hepática , Masculino , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Endogâmicos ICR , Frações Subcelulares/metabolismo , Distribuição Tecidual
14.
Int J Mol Sci ; 21(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290523

RESUMO

Clinical reports suggest a potential link between excess retinoids and development of depression. Although it has been shown that all-trans retinoic acid (ATRA) administration induces behavioral changes, further insight into how ATRA is involved is lacking. The hippocampus seems to be a major target of retinoids, and abnormal synaptic plasticity of the hippocampus is involved in depression. We examined two genes associated with synaptic function, discs large homolog 2 (DLG2), and synapse differentiation-inducing gene protein 1 (SynDIG1) in terms of hippocampal expression and correlation with behavior. Three different doses of ATRA were injected into young mice and 10 mg/kg ATRA was found to induce depression-like behavior. In the hippocampus, DLG2 mRNA was significantly decreased by ATRA. mRNA levels were positively correlated with central area duration and distance in the open-field test. Increased SynDIG1 mRNA levels were observed. There was a negative correlation between SynDIG1 mRNA levels and mobility time in the forced swimming test. Retinoic acid receptor γ mRNA was significantly positively correlated with DLG2 and negatively correlated with SynDIG1. To summarize, ATRA administration induced anxiety- and depression-like behavior accompanied by a decreased expression of DLG2 and an increased expression of SynDIG1. Moreover, DLG2 was correlated with anxiety-like behavior and SynDIG1 was correlated with depression-like behavior. These results might constitute a novel target underlying ATRA-induced anxiety- and depression-like behavior.


Assuntos
Ansiedade/etiologia , Proteínas de Transporte/genética , Depressão/etiologia , Guanilato Quinases/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteínas de Membrana/genética , Sinapses/genética , Tretinoína/farmacologia , Fatores Etários , Animais , Ansiedade/psicologia , Biomarcadores , Depressão/psicologia , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/fisiopatologia , Camundongos , RNA Mensageiro/genética , Receptores do Ácido Retinoico/metabolismo , Sinapses/metabolismo
15.
Nature ; 494(7435): 90-4, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23242137

RESUMO

Chronic neuroinflammation is a common feature of the ageing brain and some neurodegenerative disorders. However, the molecular and cellular mechanisms underlying the regulation of innate immunity in the central nervous system remain elusive. Here we show that the astrocytic dopamine D2 receptor (DRD2) modulates innate immunity through αB-crystallin (CRYAB), which is known to suppress neuroinflammation. We demonstrate that knockout mice lacking Drd2 showed remarkable inflammatory response in multiple central nervous system regions and increased the vulnerability of nigral dopaminergic neurons to neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. Astrocytes null for Drd2 became hyper-responsive to immune stimuli with a marked reduction in the level of CRYAB. Preferential ablation of Drd2 in astrocytes robustly activated astrocytes in the substantia nigra. Gain- or loss-of-function studies showed that CRYAB is critical for DRD2-mediated modulation of innate immune response in astrocytes. Furthermore, treatment of wild-type mice with the selective DRD2 agonist quinpirole increased resistance of the nigral dopaminergic neurons to MPTP through partial suppression of inflammation. Our study indicates that astrocytic DRD2 activation normally suppresses neuroinflammation in the central nervous system through a CRYAB-dependent mechanism, and provides a new strategy for targeting the astrocyte-mediated innate immune response in the central nervous system during ageing and disease.


Assuntos
Astrócitos/imunologia , Astrócitos/metabolismo , Inflamação/imunologia , Receptores de Dopamina D2/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/imunologia , Fármacos Neuroprotetores/metabolismo , Quimpirol/farmacologia , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/deficiência , Receptores de Dopamina D2/genética , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Cadeia B de alfa-Cristalina/genética
16.
Appl Opt ; 58(6): 1514-1518, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30874040

RESUMO

In the two-color laser-induced fluorescence (LIF) ratio thermometry approach, accurate temperature calibration is the key for quantitative temperature measurement, especially in wide-temperature-range applications. In this work, the temperature behavior of Rhodamine B in two common solutions (aqueous and ethanol) in a wide temperature range (-30°C-90°C) is studied by spectroscopy methods. According to the spectral and two-color LIF ratio results, a nonlinear fitting method based on Arrhenius equation is presented for a calibration equation. Compared with the traditional linear fitting model, improved accuracy at a temperature of 2°C-3°C can be achieved even at low sensitivity. Considering the nonlinear temperature behavior of Rhodamine B, this method can achieve a higher temperature sensitivity at a lower temperature, further demonstrating the feasibility of this method for low-temperature applications.

17.
Neuroendocrinology ; 107(3): 267-279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092582

RESUMO

BACKGROUND: Cold exposure increases thyrotropin-releasing hormone (TRH) expression primarily in the hypothalamic paraventricular nucleus (PVN). The PVN is a well-known hypothalamic hub in the control of energy metabolism. TRH terminals and receptors are found on PVN neurons. We hypothesized that TRH release in the PVN plays an important role in the control of thermogenesis and energy mobilization during cold exposure. METHODS: Male Wistar rats were exposed to a cold environment (4°C) or TRH retrodialysis in the PVN for 2 h. We compared the effects of cold exposure and TRH administration in the PVN on plasma glucose, corticosterone, and thyroid hormone concentrations, body temperature, locomotor activity, as well as metabolic gene expression in the liver and brown adipose tissue. RESULTS: Cold exposure increased body temperature, locomotor activity, and plasma corticosterone concentrations, but blood glucose concentrations were similar to that of room temperature control animals. TRH administration in the PVN also promptly increased body temperature, locomotor activity and plasma corticosterone concentrations. However, TRH administration in the PVN markedly increased blood glucose concentrations and endogenous glucose production (EGP) compared to saline controls. Selective hepatic sympathetic or parasympathetic denervation reduced the TRH-induced increase in glucose concentrations and EGP. Gene expression data indicated increased gluconeogenesis in liver and lipolysis in brown adipose tissue, both after cold exposure and TRH administration. CONCLUSIONS: We conclude that TRH administration in the rat PVN largely mimics the metabolic and behavioral changes induced by cold exposure indicating a potential link between TRH release in the PVN and cold defense.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Hormônio Liberador de Tireotropina/farmacologia , Animais , Glicemia , Temperatura Corporal/fisiologia , Temperatura Baixa , Corticosterona/sangue , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Wistar , Termogênese/fisiologia , Hormônios Tireóideos/sangue
18.
Appl Opt ; 57(26): 7526-7532, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30461818

RESUMO

In this work, an automatic curve fitting method based on a continuous-wavelet transform (CWT) is proposed to resolve overlapped peaks and to adaptively extract the major peaks in laser-induced breakdown spectroscopy (LIBS). From the local minimum of the second derivative of the LIBS spectrum calculated with CWT, the number of individual peaks is determined, and corresponding peak positions are estimated. The full width at half-maximums (FWHMs) of individual peaks are estimated from the separation of two maxima siding the minimum. A threshold is introduced to eliminate the small peaks and therefore reduce the number of fitting parameters and adaptively extract the major peaks with different spectral intensities. The Trust-Region algorithm is used for parameter optimization. The proposed method is used to analyze both simulated LIBS spectra and experimental overlapped peaks. Both simulated and experimental results show that the proposed method can resolve overlapped peaks even with a low separation degree, although the minimum resolvable separation degree depends on the FWHM ratio and strength ratio of individual peaks and the wavelet scale. In a LIBS calibration experiment of N2/SF6 gasses mixture, after resolving the overlapped peaks with the proposed method, better linear correlations between the concentration and intensity of F (with an adjusted R-squared value 0.9972), as well as between the concentration ratio and intensity ratio of nitrogen to fluorine (with adjusted R-squared values >0.98 and 0.99) are obtained.

19.
Hippocampus ; 26(7): 911-23, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26860546

RESUMO

Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all-trans retinoic acid (RA) potently activated the hypothalamus-pituitary-adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive-like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor-α (RAR-α) protein expression in the hippocampus, suggesting an activation of RA-induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA-induced impairments in hippocampal neurogenesis correlate with depression-like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA-associated mood disorders. © 2016 Wiley Periodicals, Inc.


Assuntos
Depressão/induzido quimicamente , Hipocampo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tretinoína/toxicidade , Anedonia/efeitos dos fármacos , Anedonia/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Astrócitos/fisiologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Depressão/patologia , Depressão/fisiopatologia , Sacarose Alimentar , Proteína Duplacortina , Gliose/patologia , Gliose/fisiopatologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Neurogênese/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Percepção Gustatória/efeitos dos fármacos , Percepção Gustatória/fisiologia
20.
Cereb Cortex ; 25(1): 75-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23960204

RESUMO

The prefrontal cortex shows structural and functional alterations in mood disorders. Retinoid signaling, brain-derived neurotrophic factor (BDNF), and its receptor TrkB are reported to be involved in depression. Here, we found that mRNA levels of key elements of retinoid signaling were significantly reduced in the postmortem dorsolateral prefrontal cortex/anterior cingulate cortex (ACC) from elderly depressed patients who did not die from suicide. Decreased mRNA levels of BDNF and TrkB isoforms were also found. Similar alterations were observed in rats subjected to chronic unpredictable mild stress. Along with neurons immunopositive for both retinoic acid receptor-α (RARα) and TrkB, a positive correlation between mRNA levels of the 2 receptors was found in the ACC of control subjects but not of depressed patients. In vitro studies showed that RARα was able to bind to and transactivate the TrkB promoter via a putative RA response element within the TrkB promoter. In conclusion, the retinoid and BDNF-TrkB signaling in the prefrontal cortex are compromised in mood disorders, and the transcriptional upregulation of TrkB by RARα provide a possible mechanism for their interaction. The retinoid signaling pathway that may activate TrkB expression will be an alternative novel target for BDNF-based antidepressant treatment.


Assuntos
Transtorno Bipolar/metabolismo , Transtorno Depressivo Maior/metabolismo , Glicoproteínas de Membrana/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores X de Retinoides/metabolismo , Idoso , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Aldeído Oxirredutases/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetulus , Feminino , Giro do Cíngulo/metabolismo , Humanos , Masculino , Neuroblastoma , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB , Retinal Desidrogenase , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide beta/metabolismo , Transdução de Sinais , Estresse Psicológico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA