Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 174(2): 481-496.e19, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007419

RESUMO

Dopamine (DA) is a central monoamine neurotransmitter involved in many physiological and pathological processes. A longstanding yet largely unmet goal is to measure DA changes reliably and specifically with high spatiotemporal precision, particularly in animals executing complex behaviors. Here, we report the development of genetically encoded GPCR-activation-based-DA (GRABDA) sensors that enable these measurements. In response to extracellular DA, GRABDA sensors exhibit large fluorescence increases (ΔF/F0 ∼90%) with subcellular resolution, subsecond kinetics, nanomolar to submicromolar affinities, and excellent molecular specificity. GRABDA sensors can resolve a single-electrical-stimulus-evoked DA release in mouse brain slices and detect endogenous DA release in living flies, fish, and mice. In freely behaving mice, GRABDA sensors readily report optogenetically elicited nigrostriatal DA release and depict dynamic mesoaccumbens DA signaling during Pavlovian conditioning or during sexual behaviors. Thus, GRABDA sensors enable spatiotemporally precise measurements of DA dynamics in a variety of model organisms while exhibiting complex behaviors.


Assuntos
Dopamina/análise , Drosophila/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Comportamento Animal , Dopamina/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/metabolismo , Optogenética/métodos , Receptores Acoplados a Proteínas G/genética , Canais de Cátion TRPV/genética , Proteínas de Peixe-Zebra/genética
2.
Nat Methods ; 17(11): 1156-1166, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087905

RESUMO

Dopamine (DA) plays a critical role in the brain, and the ability to directly measure dopaminergic activity is essential for understanding its physiological functions. We therefore developed red fluorescent G-protein-coupled receptor-activation-based DA (GRABDA) sensors and optimized versions of green fluorescent GRABDA sensors. In response to extracellular DA, both the red and green GRABDA sensors exhibit a large increase in fluorescence, with subcellular resolution, subsecond kinetics and nanomolar-to-submicromolar affinity. Moreover, the GRABDA sensors resolve evoked DA release in mouse brain slices, detect evoked compartmental DA release from a single neuron in live flies and report optogenetically elicited nigrostriatal DA release as well as mesoaccumbens dopaminergic activity during sexual behavior in freely behaving mice. Coexpressing red GRABDA with either green GRABDA or the calcium indicator GCaMP6s allows tracking of dopaminergic signaling and neuronal activity in distinct circuits in vivo.


Assuntos
Técnicas Biossensoriais/métodos , Encéfalo/metabolismo , Dopamina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Comportamento Sexual/fisiologia , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Neurônios/metabolismo , Ratos , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteína Vermelha Fluorescente
3.
Proc Natl Acad Sci U S A ; 115(8): E1886-E1895, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29437952

RESUMO

Neuromodulation of neural networks, whereby a selected circuit is regulated by a particular modulator, plays a critical role in learning and memory. Among neuromodulators, acetylcholine (ACh) plays a critical role in hippocampus-dependent memory and has been shown to modulate neuronal circuits in the hippocampus. However, it has remained unknown how ACh modulates hippocampal output. Here, using in vitro and in vivo approaches, we show that ACh, by activating oriens lacunosum moleculare (OLM) interneurons and therefore augmenting the negative-feedback regulation to the CA1 pyramidal neurons, suppresses the circuit from the hippocampal area CA1 to the deep-layer entorhinal cortex (EC). We also demonstrate, using mouse behavior studies, that the ablation of OLM interneurons specifically impairs hippocampus-dependent but not hippocampus-independent learning. These data suggest that ACh plays an important role in regulating hippocampal output to the EC by activating OLM interneurons, which is critical for the formation of hippocampus-dependent memory.


Assuntos
Neurônios Colinérgicos/citologia , Córtex Entorrinal/citologia , Hipocampo/citologia , Interneurônios/citologia , Acetilcolina/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Córtex Entorrinal/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Vias Neurais
4.
Biophys J ; 108(11): 2658-69, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26039167

RESUMO

Auxiliary Kv channel-interacting proteins 1-4 (KChIPs1-4) coassemble with pore-forming Kv4 α-subunits to form channel complexes underlying somatodendritic subthreshold A-type current that regulates neuronal excitability. It has been hypothesized that different KChIPs can competitively bind to Kv4 α-subunit to form variable channel complexes that can exhibit distinct biophysical properties for modulation of neural function. In this study, we use single-molecule subunit counting by total internal reflection fluorescence microscopy in combinations with electrophysiology and biochemistry to investigate whether different isoforms of auxiliary KChIPs, KChIP4a, and KChIP4bl, can compete for binding of Kv4.3 to coassemble heteromultimeric channel complexes for modulation of channel function. To count the number of photobleaching steps solely from cell membrane, we take advantage of a membrane tethered k-ras-CAAX peptide that anchors cytosolic KChIP4 proteins to the surface for reduction of background noise. Single-molecule subunit counting reveals that the number of KChIP4 isoforms in Kv4.3-KChIP4 complexes can vary depending on the KChIP4 expression level. Increasing the amount of KChIP4bl gradually reduces bleaching steps of KChIP4a isoform proteins, and vice versa. Further analysis of channel gating kinetics from different Kv4-KChIP4 subunit compositions confirms that both KChIP4a and KChIP4bl can modulate the channel complex function upon coassembly. Taken together, our findings show that auxiliary KChIPs can heteroassemble with Kv4 in a competitive manner to form heteromultimeric Kv4-KChIP4 channel complexes that are biophysically distinct and regulated under physiological or pathological conditions.


Assuntos
Ligação Competitiva , Proteínas Interatuantes com Canais de Kv/química , Proteínas Interatuantes com Canais de Kv/metabolismo , Multimerização Proteica , Subunidades Proteicas/química , Canais de Potássio Shal/química , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ativação do Canal Iônico , Cinética , Porosidade , Subunidades Proteicas/metabolismo , Canais de Potássio Shal/metabolismo , Xenopus
5.
Acta Pharmacol Sin ; 36(7): 800-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948478

RESUMO

AIM: Alpha7-nicotinic acetylcholine receptor (α7 nAChR) is a ligand-gated Ca(2+)-permeable ion channel implicated in cognition and neuropsychiatric disorders. Activation of α7 nAChR improves learning, memory, and sensory gating in animal models. To identify novel α7 nAChR agonists, we synthesized a series of small molecules and characterized a representative compound, Br-IQ17B, N-[(3R)-1-azabicyclo[2,2,2]oct-3-yl]-5-bromoindolizine-2-carboxamide, which specifically activates α7 nAChR. METHODS: Two-electrode voltage clamp (TEVC) recordings were primarily used for screening in Xenopus oocytes expressing human α7 nAChR. Assays, including radioisotope ligand binding, Western blots, whole-cell recordings of hippocampal culture neurons, and spontaneous IPSC recordings of brain slices, were also utilized to evaluate and confirm the specific activation of α7 nAChR by Br-IQ17B. RESULTS: Br-IQ17B potently activates α7 nAChR with an EC50 of 1.8±0.2 µmol/L. Br-IQ17B is selective over other subtypes such as α4ß2 and α3ß4, but it blocks 5-HT3A receptors. Br-IQ17B displaced binding of the α7 blocker [(3)H]-MLA to hippocampal crude membranes with a Ki of 14.9±3.2 nmol/L. In hippocampal neurons, Br-IQ17B evoked α7-like currents that were inhibited by MLA and enhanced in the presence of the α7 PAM PNU-120596. In brain slice recordings, Br-IQ17B enhanced GABAergic synaptic transmission in CA1 neurons. Mechanistically, Br-IQ17B increased ERK1/2 phosphorylation that was MLA-sensitive. CONCLUSION: We identified the novel, potent, and selective α7 agonist Br-IQ17B, which enhances synaptic transmission. Br-IQ17B may be a helpful tool to understand new aspects of α7 nAChR function, and it also has potential for being developed as therapy for schizophrenia and cognitive deficits.


Assuntos
Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Técnicas de Cultura de Órgãos , Células PC12 , Ratos , Ratos Sprague-Dawley , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7/fisiologia
6.
Biophys J ; 107(5): 1090-1104, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25185545

RESUMO

A-type Kv4 potassium channels undergo a conformational change toward a nonconductive state at negative membrane potentials, a dynamic process known as pre-open closed states or closed-state inactivation (CSI). CSI causes inhibition of channel activity without the prerequisite of channel opening, thus providing a dynamic regulation of neuronal excitability, dendritic signal integration, and synaptic plasticity at resting. However, the structural determinants underlying Kv4 CSI remain largely unknown. We recently showed that the auxiliary KChIP4a subunit contains an N-terminal Kv4 inhibitory domain (KID) that directly interacts with Kv4.3 channels to enhance CSI. In this study, we utilized the KChIP4a KID to probe key structural elements underlying Kv4 CSI. Using fluorescence resonance energy transfer two-hybrid mapping and bimolecular fluorescence complementation-based screening combined with electrophysiology, we identified the intracellular tetramerization (T1) domain that functions to suppress CSI and serves as a receptor for the binding of KID. Disrupting the Kv4.3 T1-T1 interaction interface by mutating C110A within the C3H1 motif of T1 domain facilitated CSI and ablated the KID-mediated enhancement of CSI. Furthermore, replacing the Kv4.3 T1 domain with the T1 domain from Kv1.4 (without the C3H1 motif) or Kv2.1 (with the C3H1 motif) resulted in channels functioning with enhanced or suppressed CSI, respectively. Taken together, our findings reveal a novel (to our knowledge) role of the T1 domain in suppressing Kv4 CSI, and that KChIP4a KID directly interacts with the T1 domain to facilitate Kv4.3 CSI, thus leading to inhibition of channel function.


Assuntos
Proteínas Interatuantes com Canais de Kv/metabolismo , Canais de Potássio Shal/metabolismo , Animais , Biotinilação , Western Blotting , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Potenciais da Membrana/fisiologia , Microscopia Confocal , Oócitos/fisiologia , Técnicas de Patch-Clamp , Ácidos Polimetacrílicos , Compostos de Amônio Quaternário , Canais de Potássio Shal/genética , Transfecção , Xenopus laevis
7.
J Biol Chem ; 288(21): 14727-41, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23576435

RESUMO

In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K(+) channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1-4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12-17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19-21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Potássio/metabolismo , Canais de Potássio Shal/metabolismo , Motivos de Aminoácidos , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Transporte de Íons/fisiologia , Proteínas Interatuantes com Canais de Kv/genética , Estrutura Terciária de Proteína , Canais de Potássio Shal/antagonistas & inibidores , Canais de Potássio Shal/genética
8.
Neuron ; 112(12): 1930-1942.e6, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38547869

RESUMO

Norepinephrine (NE) is an essential biogenic monoamine neurotransmitter. The first-generation NE sensor makes in vivo, real-time, cell-type-specific and region-specific NE detection possible, but its low NE sensitivity limits its utility. Here, we developed the second-generation GPCR-activation-based NE sensors (GRABNE2m and GRABNE2h) with a superior response and high sensitivity and selectivity to NE both in vitro and in vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell-type-specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNE sensors are valuable tools for monitoring the precise spatiotemporal release of NE in vivo, providing new insights into the physiological and pathophysiological roles of NE.


Assuntos
Locus Cerúleo , Camundongos Transgênicos , Norepinefrina , Optogenética , Animais , Norepinefrina/metabolismo , Camundongos , Optogenética/métodos , Locus Cerúleo/metabolismo , Cálcio/metabolismo , Vigília/fisiologia , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Hipotálamo/metabolismo , Sono/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Técnicas Biossensoriais/métodos , Células HEK293 , Fotometria/métodos
9.
Neuropharmacology ; 226: 109397, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36623805

RESUMO

We recently reported that the "Dopamine Neuron Challenge Test" (DNC Test), a diagnostic method that measures the levels of dopamine metabolites in cerebrospinal fluid (CSF) and plasma samples after pharmacologically inducing a transient dopamine release, can detect early-stage Parkinson's disease (PD) with high sensitivity and selectivity in mouse models. The use of haloperidol in the original DNC test to challenge dopamine neurons was less than ideal, as it may cause extrapyramidal motor symptoms. Here we report an improved DNC Test, in which the original challenging agents, haloperidol and methylphenidate, are replaced by a single challenging agent, a dopamine autoreceptor preferring antagonist AJ76 or UH232. We show that the improved DNC Test can achieve the same level of sensitivity and selectivity in detecting early PD in a mouse model without causing motor side effects. These findings significantly improve the practicality of using the DNC Test as a screening or diagnostic test for detecting early-stage PD in the high-risk population in humans.


Assuntos
Dopamina , Doença de Parkinson , Animais , Camundongos , Humanos , Dopamina/metabolismo , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Ácido Homovanílico/metabolismo , Antagonistas de Dopamina/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo
10.
Int J Biol Macromol ; 250: 126223, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558020

RESUMO

Faced with the pollution caused by particulate matter (PM) in the air, the prevalence of infectious diseases, and the environmental burden by use of nondegradable polymers, the existing filter materials such as meltblown cloth of polypropylene cannot satisfactorily meet people's requirements. In this study, Ag nanoparticles were loaded onto ZIF-8 particles by impregnation reduction to prepare the positively charged Ag@ZIF-8. The porous fibrous membranes of Ag@ZIF-8 with polylactide (PLA) were manufactured by electrostatic spinning technology. Due to the inherently charged feature of Ag@ZIF-8 particles and the presence of pores on fibers, the prepared membranes showed a stable good filtration efficiency of over 97 % at different humidity (30-90%RH, relative humidity). Meanwhile, the presence of charge on Ag@ZIF-8 and the synergistic effects of Ag and ZIF-8 particles made the membranes exhibit good antibacterial effects. The width of the inhibition zone of 3 wt%Ag@ZIF-8/PLA membrane reached 1.33 mm for E. coli and 1.35 mm for S. aureus, respectively.


Assuntos
Nanopartículas Metálicas , Humanos , Porosidade , Escherichia coli , Staphylococcus aureus , Prata/farmacologia , Antibacterianos/farmacologia , Poliésteres/farmacologia
11.
Int J Biol Macromol ; 212: 182-192, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598727

RESUMO

The widely used melt-blown polypropylene (PP) non-woven fabrics had no antibacterial functions and its large-scale use also increased the burden on the environment owing to its non-degradable property. Herein, silver (I) metal organic frameworks (Ag-2MI) were prepared with AgNO3 and 2-methylimidazole and embedded into degradable poly(l-lactide) (PLLA) to make an ultrathin filtration and antibacterial membrane by electrospinning technology with low loading of Ag-2MI. The morphology, mechanical properties, adsorption performance and antibacterial activities of the prepared films were tested and the results indicated that the addition of Ag-2MI could reduce the diameter of PLLA fibers from 910 nm to 520 nm (1.8 wt% of Ag-2MI), while the tensile strength, elongation at break of the membrane and the contact angle of the films were enhanced. Although the thickness of the prepared membranes was only about one-third of that of commercially available melt-blown cloth, they exhibited better filtering performances than the melt-blown cloth. The fiber membrane with low loading of 1.8 wt% Ag-2MI showed 99.99% inhibition rate against Escherichia coli and Staphylococcus aureus.


Assuntos
Poluição do Ar , Prata , Antibacterianos/farmacologia , Escherichia coli , Poliésteres , Prata/farmacologia
12.
Curr Protoc ; 2(11): e587, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36373979

RESUMO

This article describes how to assemble and operate a spectrometer-based fiber photometry system for in vivo simultaneous measurements of multiple fluorescent biosensors in freely moving mice. The first section of the article describes the step-by-step procedure to assemble a basic single-spectrometer fiber photometry system and how to expand it into a dual-spectrometer system that allows for simultaneous recordings from two sites. The second part describes the steps for a typical fiber probe implantation surgery. The last section describes how to acquire and analyze the time-lapsed spectral data. This article is intended for teaching labs how to build their own fiber photometry systems (with a video tutorial) from commercially available parts and perform in vivo recordings in behaving mice. © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Assembling a dual-laser, single-spectrometer fiber photometry system Support Protocol: Dual-spectrometer fiber photometry assembly Basic Protocol 2: Optical fiber probe implantation Basic Protocol 3: Data acquisition and analysis.


Assuntos
Fibras Ópticas , Fotometria , Animais , Camundongos , Fotometria/métodos
13.
Cell Rep Methods ; 2(7): 100243, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35880016

RESUMO

Fiber photometry is an emerging technique for recording fluorescent sensor activity in the brain. However, significant hemoglobin absorption artifacts in fiber photometry data may be misinterpreted as sensor activity changes. Because hemoglobin exists widely in the brain, and its concentration varies temporally, such artifacts could impede the accuracy of photometry recordings. Here we present use of spectral photometry and computational methods to quantify photon absorption effects by using activity-independent fluorescence signals, which can be used to derive oxy- and deoxy-hemoglobin concentration changes. Although these changes are often temporally delayed compared with the fast-responding fluorescence spikes, we found that erroneous interpretation may occur when examining pharmacology-induced sustained changes and that sometimes hemoglobin absorption could flip the GCaMP signal polarity. We provide hemoglobin-based correction methods to restore fluorescence signals and compare our results with other commonly used approaches. We also demonstrated the utility of spectral fiber photometry for delineating regional differences in hemodynamic response functions.


Assuntos
Encéfalo , Neurônios , Neurônios/fisiologia , Encéfalo/fisiologia , Fotometria/métodos , Artefatos
14.
Sci Adv ; 8(17): eabm9898, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486721

RESUMO

The default mode network (DMN) of the brain is functionally associated with a wide range of behaviors. In this study, we used functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and spectral fiber photometry to investigate the selective neuromodulatory effect of norepinephrine (NE)-releasing noradrenergic neurons in the locus coeruleus (LC) on the mouse DMN. Chemogenetic-induced tonic LC activity decreased cerebral blood volume (CBV) and glucose uptake and increased synchronous low-frequency fMRI activity within the frontal cortices of the DMN. Fiber photometry results corroborated these findings, showing that LC-NE activation induced NE release, enhanced calcium-weighted neuronal spiking, and reduced CBV in the anterior cingulate cortex. These data suggest that LC-NE alters conventional coupling between neuronal activity and CBV in the frontal DMN. We also demonstrated that chemogenetic activation of LC-NE neurons strengthened functional connectivity within the frontal DMN, and this effect was causally mediated by reduced modulatory inputs from retrosplenial and hippocampal regions to the association cortices of the DMN.

15.
Nat Commun ; 13(1): 3490, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715418

RESUMO

Endocannabinoid (eCB), 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain, regulates diverse neural functions. Here we linked multiple homozygous loss-of-function mutations in 2-AG synthase diacylglycerol lipase ß (DAGLB) to an early onset autosomal recessive Parkinsonism. DAGLB is the main 2-AG synthase in human and mouse substantia nigra (SN) dopaminergic neurons (DANs). In mice, the SN 2-AG levels were markedly correlated with motor performance during locomotor skill acquisition. Genetic knockdown of Daglb in nigral DANs substantially reduced SN 2-AG levels and impaired locomotor skill learning, particularly the across-session learning. Conversely, pharmacological inhibition of 2-AG degradation increased nigral 2-AG levels, DAN activity and dopamine release and rescued the locomotor skill learning deficits. Together, we demonstrate that DAGLB-deficiency contributes to the pathogenesis of Parkinsonism, reveal the importance of DAGLB-mediated 2-AG biosynthesis in nigral DANs in regulating neuronal activity and dopamine release, and suggest potential benefits of 2-AG augmentation in alleviating Parkinsonism.


Assuntos
Neurônios Dopaminérgicos , Lipase Lipoproteica/metabolismo , Transtornos Parkinsonianos , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Endocanabinoides/metabolismo , Camundongos , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo
16.
NPJ Parkinsons Dis ; 7(1): 116, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916526

RESUMO

Diagnosing Parkinson's disease (PD) before the clinical onset proves difficult because the hallmark PD symptoms do not manifest until more than 60% of dopamine neurons in the substantia nigra pars compacta have been lost. Here we show that, by evoking a transient dopamine release and subsequently measuring the levels of dopamine metabolites in the cerebrospinal fluid and plasma, a hypodopaminergic state can be revealed when less than 30% of dopamine neurons are lost in mouse PD models. These findings may lead to sensitive and practical screening and diagnostic tests for detecting early PD in the high-risk population.

18.
Cell Rep ; 26(1): 168-181.e4, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605673

RESUMO

The heat shock protein 70 (Hsp70) is upregulated in response to stress and has been implicated as a stress marker in temporal lobe epilepsy (TLE). However, whether Hsp70 plays a pathologic or protective role in TLE remains unclear. Here we report a deleterious role of Hsp70 in kainic acid (KA)-induced seizures. Hsp70 expression is upregulated in a KA model of TLE, and silencing or inhibition of Hsp70 suppresses neuronal hyperexcitability and attenuates acute or chronic epilepsy by enhancing A-type potassium current in hippocampal neurons. Hsp70 upregulation leads to proteosomal degradation of Kv4-KChIP4a channel complexes primarily encoding neuronal A-type current. Furthermore, Hsp70 directly binds to the N terminus of auxiliary KChIP4a and targets Kv4-KChIP4a complexes to proteasome. Taken together, our findings reveal a role of Hsp70 in the pathogenesis of epilepsy through degradation of Kv4-KChIP4a complexes, and pharmacological inhibition of Hsp70 may represent therapeutic potential for epilepsy or hyperexcitability-related neurological disorders.


Assuntos
Epilepsia/genética , Proteínas de Choque Térmico HSP70/metabolismo , Potássio/metabolismo , Animais , Masculino
19.
Neuron ; 102(4): 745-761.e8, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30922875

RESUMO

Norepinephrine (NE) is a key biogenic monoamine neurotransmitter involved in a wide range of physiological processes. However, its precise dynamics and regulation remain poorly characterized, in part due to limitations of available techniques for measuring NE in vivo. Here, we developed a family of GPCR activation-based NE (GRABNE) sensors with a 230% peak ΔF/F0 response to NE, good photostability, nanomolar-to-micromolar sensitivities, sub-second kinetics, and high specificity. Viral- or transgenic-mediated expression of GRABNE sensors was able to detect electrical-stimulation-evoked NE release in the locus coeruleus (LC) of mouse brain slices, looming-evoked NE release in the midbrain of live zebrafish, as well as optogenetically and behaviorally triggered NE release in the LC and hypothalamus of freely moving mice. Thus, GRABNE sensors are robust tools for rapid and specific monitoring of in vivo NE transmission in both physiological and pathological processes.


Assuntos
Proteínas de Fluorescência Verde/genética , Hipotálamo/metabolismo , Locus Cerúleo/metabolismo , Mesencéfalo/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/genética , Animais , Animais Geneticamente Modificados , Estimulação Elétrica , Técnicas In Vitro , Microscopia Intravital , Camundongos , Microscopia de Fluorescência , Optogenética , Engenharia de Proteínas , Peixe-Zebra
20.
Neuron ; 98(4): 707-717.e4, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29731250

RESUMO

To achieve simultaneous measurement of multiple cellular events in molecularly defined groups of neurons in vivo, we designed a spectrometer-based fiber photometry system that allows for spectral unmixing of multiple fluorescence signals recorded from deep brain structures in behaving animals. Using green and red Ca2+ indicators differentially expressed in striatal direct- and indirect-pathway neurons, we were able to simultaneously monitor the neural activity in these two pathways in freely moving animals. We found that the activities were highly synchronized between the direct and indirect pathways within one hemisphere and were desynchronized between the two hemispheres. We further analyzed the relationship between the movement patterns and the magnitude of activation in direct- and indirect-pathway neurons and found that the striatal direct and indirect pathways coordinately control the dynamics and fate of movement. VIDEO ABSTRACT.


Assuntos
Corpo Estriado/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Espectrometria de Fluorescência/métodos , Animais , Encéfalo/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Proteínas de Fluorescência Verde , Microscopia Intravital , Proteínas Luminescentes , Camundongos , Vias Neurais/diagnóstico por imagem , Imagem Óptica , Fotometria , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA