Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(14): 7723-7732, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38554094

RESUMO

Liquid crystal emulsion is a new type of emulsion, in which the emulsifier molecules are located at the oil/water (O/W) interface and form a long-range ordered and short-range disordered lamellar liquid crystal. The lamellar liquid crystal formed by the emulsifier is similar to the skin stratum corneum lipid structure, which enables it to have a broad application prospect in the fields of cosmetics, pharmaceuticals, etc. In this work, a liquid crystal nanoemulsion was obtained by passing a liquid crystal emulsion stabilized by hydrogenated lecithin and phytosterol combination through a microfluidizer. The microstructure of the prepared liquid crystal nanoemulsion was investigated experimentally by dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering. The results have shown that the nanoemulsion inherited the liquid crystal emulsion property, namely, the long-range ordered and short-range disordered lamellar structure still existed at the oil/water interface even though they underwent extrusion, friction, and acceleration. At the same time, the underlying mechanisms of the existence of lamellar liquid crystal between the oil phase and the water phase for the nanoemulsion were explored theoretically by molecular dynamics simulations. The simulation results elucidated that the hydrogenated lecithin and phytosterol combination improved the flexibility of the bilayer structure composed of emulsifiers. The bilayers were the basic structure units of lamellar liquid crystals, and thus, the improved flexibility of bilayers provided insurance for the existence of lamellar liquid crystals with larger curvature around the oil droplets. In addition, the applicable properties of liquid crystal nanoemulsion were studied, and the results have shown that the liquid crystal nanoemulsion presented better slow-release and moisturizing properties than traditional nanoemulsions due to the existence of multilayers between oil and water phases. This work not only provides necessary information for the development and effective application of liquid crystal emulsions but also is helpful for in-depth understanding the inner properties of lamellar liquid crystal at molecular level.

2.
Langmuir ; 40(1): 594-603, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38115608

RESUMO

The application of alcohols as permeation enhancers in pharmaceutical and cosmetic formulations has attracted considerable attention, owing to their skin permeation-enhancing effect. Nonetheless, the elucidation of the fundamental mechanisms underlying the skin permeation-enhancing effect remains elusive. In this study, molecular dynamics (MD) simulations were employed to investigate the effect of 1,2-propanediol (1,2-PDO), 1,2-butanediol (1,2-BDO), and ethanol (EtOH) on the stratum corneum (SC) model membrane. The results showed that the effect of alcohols on the SC model membrane displayed a concentration-dependent nature. The alcohols can interact with SC lipids and exhibit a remarkable ability to selectively extract free fatty acid (FFA) molecules from the SC model membrane and make the SC looser. Meanwhile, 1,2-BDO and EtOH can penetrate into SC lipid bilayers at higher concentrations, leading to the formation of continuous hydrophilic defects in SC. The FFA extraction and the formation of continuous hydrophilic defects induced ceramide (CER) tail chains to become more disordered and fluid and also weakened the hydrogen bonding (H-bonding) network among SC lipids. Both the FFA extraction and the continuous hydrophilic defect formation endowed alcohols with the permeation-enhancing effect. The constrained simulations revealed that the free energy barriers decreased for the permeation of the hydrophilic model molecule (COL) across the SC model membranes containing alcohols, particularly for 1,2-BDO and EtOH. The possible permeation-enhancing mechanisms of alcohols were proposed correspondingly. This work not only provided a deep understanding of the transdermal permeation-enhancing behavior of alcohols at the molecular level but also provided necessary reference information for designing effective transdermal drug delivery systems in applications.


Assuntos
Simulação de Dinâmica Molecular , Pele , Permeabilidade , Administração Cutânea , Etanol , Bicamadas Lipídicas
3.
J Phys Chem B ; 128(26): 6327-6337, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38913878

RESUMO

Transdermal behavior is a critical aspect of studying delivery systems and evaluating the efficacy of cosmetics. However, existing methods face challenges such as lengthy experiments, high cost, and limited model accuracy. Therefore, developing accurate transdermal models is essential for formulation development and effectiveness assessment. In this study, we developed a multiscale model to describe the transdermal behavior of active ingredients in the stratum corneum. Molecular dynamics simulations were used to construct lipid bilayers and determine the diffusion coefficients of active ingredients in different regions of these bilayers. These diffusion coefficients were integrated into a multilayer lipid pathway model using finite element simulations. The simulation results were in close agreement with our experimental results for three active ingredients (mandelic acid (MAN), nicotinamide (NIC), and pyruvic acid (PYR)), demonstrating the effectiveness of our multiscale model. This research provides valuable insights for advancing transdermal delivery methods.


Assuntos
Administração Cutânea , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Niacinamida , Ácido Pirúvico , Niacinamida/química , Niacinamida/administração & dosagem , Bicamadas Lipídicas/química , Ácido Pirúvico/química , Ácidos Mandélicos/química , Ácidos Mandélicos/administração & dosagem , Difusão , Pele/metabolismo , Pele/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA