Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1380-D1392, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889076

RESUMO

DNA methylation plays a crucial role in tumorigenesis and tumor progression, sparking substantial interest in the clinical applications of cancer DNA methylation biomarkers. Cancer-related whole-genome bisulfite sequencing (WGBS) data offers a promising approach to precisely identify these biomarkers with differentially methylated regions (DMRs). However, currently there is no dedicated resource for cancer DNA methylation biomarkers with WGBS data. Here, we developed a comprehensive cancer DNA methylation biomarker database (MethMarkerDB, https://methmarkerdb.hzau.edu.cn/), which integrated 658 WGBS datasets, incorporating 724 curated DNA methylation biomarker genes from 1425 PubMed published articles. Based on WGBS data, we documented 5.4 million DMRs from 13 common types of cancer as candidate DNA methylation biomarkers. We provided search and annotation functions for these DMRs with different resources, such as enhancers and SNPs, and developed diagnostic and prognostic models for further biomarker evaluation. With the database, we not only identified known DNA methylation biomarkers, but also identified 781 hypermethylated and 5245 hypomethylated pan-cancer DMRs, corresponding to 693 and 2172 genes, respectively. These novel potential pan-cancer DNA methylation biomarkers hold significant clinical translational value. We hope that MethMarkerDB will help identify novel cancer DNA methylation biomarkers and propel the clinical application of these biomarkers.


Assuntos
Biomarcadores Tumorais , Carcinogênese , Metilação de DNA , Bases de Dados Genéticas , Humanos , Biomarcadores Tumorais/genética , Metilação de DNA/genética , Sequenciamento Completo do Genoma , Carcinogênese/genética , Elementos Facilitadores Genéticos
2.
Nucleic Acids Res ; 51(D1): D57-D69, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36243984

RESUMO

Chromatin loops (or chromatin interactions) are important elements of chromatin structures. Disruption of chromatin loops is associated with many diseases, such as cancer and polydactyly. A few methods, including ChIA-PET, HiChIP and PLAC-Seq, have been proposed to detect high-resolution, specific protein-mediated chromatin loops. With rapid progress in 3D genomic research, ChIA-PET, HiChIP and PLAC-Seq datasets continue to accumulate, and effective collection and processing for these datasets are urgently needed. Here, we developed a comprehensive, multispecies and specific protein-mediated chromatin loop database (ChromLoops, https://3dgenomics.hzau.edu.cn/chromloops), which integrated 1030 ChIA-PET, HiChIP and PLAC-Seq datasets from 13 species, and documented 1 491 416 813 high-quality chromatin loops. We annotated genes and regions overlapping with chromatin loop anchors with rich functional annotations, such as regulatory elements (enhancers, super-enhancers and silencers), variations (common SNPs, somatic SNPs and eQTLs), and transcription factor binding sites. Moreover, we identified genes with high-frequency chromatin interactions in the collected species. In particular, we identified genes with high-frequency interactions in cancer samples. We hope that ChromLoops will provide a new platform for studying chromatin interaction regulation in relation to biological processes and disease.


Assuntos
Cromatina , Bases de Dados Genéticas , Cromatina/genética , Cromossomos , Genoma , Genômica , Sequências Reguladoras de Ácido Nucleico , Humanos , Animais
3.
Nucleic Acids Res ; 50(D1): D60-D71, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34664666

RESUMO

DNA methylation is known to be the most stable epigenetic modification and has been extensively studied in relation to cell differentiation, development, X chromosome inactivation and disease. Allele-specific DNA methylation (ASM) is a well-established mechanism for genomic imprinting and regulates imprinted gene expression. Previous studies have confirmed that certain special regions with ASM are susceptible and closely related to human carcinogenesis and plant development. In addition, recent studies have proven ASM to be an effective tumour marker. However, research on the functions of ASM in diseases and development is still extremely scarce. Here, we collected 4400 BS-Seq datasets and 1598 corresponding RNA-Seq datasets from 47 species, including human and mouse, to establish a comprehensive ASM database. We obtained the data on DNA methylation level, ASM and allele-specific expressed genes (ASEGs) and further analysed the ASM/ASEG distribution patterns of these species. In-depth ASM distribution analysis and differential methylation analysis conducted in nine cancer types showed results consistent with the reported changes in ASM in key tumour genes and revealed several potential ASM tumour-related genes. Finally, integrating these results, we constructed the first well-resourced and comprehensive ASM database for 47 species (ASMdb, www.dna-asmdb.com).


Assuntos
Metilação de DNA/genética , Bases de Dados Genéticas , Epigênese Genética/genética , Impressão Genômica/genética , Alelos , Animais , Ilhas de CpG/genética , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único/genética , RNA-Seq , Inativação do Cromossomo X/genética
4.
Yi Chuan ; 43(9): 816-821, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34702695

RESUMO

In interphase eukaryotic nuclei, chromatin is folded to form a higher-order topological structure. The spatial organization of such chromatin domain has an important impact on the regulation of gene expression. As a key architectural structural protein, CTCF (CCCTC-binding factor) plays an important role in the formation of chromatin three-dimensional chromatin structure. CTCF can also bind to many insulator elements in the genome and insulate enhancers from activating target genes via modulating remote chromatin interactions. A recent study by Dr. Chunliang Li and his team at St. Jude Children's Research Hospital in the United States showed that when CTCF was acutely degraded, significant changes were found in the three-dimensional structure of chromatin. The mechanism by which CTCF binding sites function as insulator elements was investigated by Prof. Qiang Wu's team at Institute of Systems Biomedicine and Shanghai Jiao Tong University in China and Prof. Bing Ren's team at Ludwig Institute for Cancer Research in the United States. Here we mainly review and discuss some of these latest progresses.


Assuntos
Genoma , Elementos Isolantes , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Criança , China , Cromatina/genética , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Elementos Isolantes/genética
5.
BMC Bioinformatics ; 21(1): 451, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045983

RESUMO

BACKGROUND: DNA methylation is an important epigenetic modification that plays a critical role in most eukaryotic organisms. Parental alleles in haploid genomes may exhibit different methylation patterns, which can lead to different phenotypes and even different therapeutic and drug responses to diseases. However, to our knowledge, no software is available for the identification of DNA methylation haplotype regions with combined allele-specific DNA methylation, single nucleotide polymorphisms (SNPs) and high-throughput chromosome conformation capture (Hi-C) data. RESULTS: In this paper, we developed a new method, MethHaplo, that identify DNA methylation haplotype regions with allele-specific DNA methylation and SNPs from whole-genome bisulfite sequencing (WGBS) data. Our results showed that methylation haplotype regions were ten times longer than haplotypes with SNPs only. When we integrate WGBS and Hi-C data, MethHaplo could call even longer haplotypes. CONCLUSIONS: This study illustrates the usefulness of methylation haplotypes. By constructing methylation haplotypes for various cell lines, we provide a clearer picture of the effect of DNA methylation on gene expression, histone modification and three-dimensional chromosome structure at the haplotype level. Our method could benefit the study of parental inheritance-related disease and hybrid vigor in agriculture.


Assuntos
Alelos , Metilação de DNA , Haplótipos/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Epigênese Genética , Software
6.
BMC Bioinformatics ; 20(1): 47, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30669962

RESUMO

BACKGROUND: DNA methylation plays crucial roles in most eukaryotic organisms. Bisulfite sequencing (BS-Seq) is a sequencing approach that provides quantitative cytosine methylation levels in genome-wide scope and single-base resolution. However, genomic variations such as insertions and deletions (indels) affect methylation calling, and the alignment of reads near/across indels becomes inaccurate in the presence of polymorphisms. Hence, the simultaneous detection of DNA methylation and indels is important for exploring the mechanisms of functional regulation in organisms. RESULTS: These problems motivated us to develop the algorithm BatMeth2, which can align BS reads with high accuracy while allowing for variable-length indels with respect to the reference genome. The results from simulated and real bisulfite DNA methylation data demonstrated that our proposed method increases alignment accuracy. Additionally, BatMeth2 can calculate the methylation levels of individual loci, genomic regions or functional regions such as genes/transposable elements. Additional programs were also developed to provide methylation data annotation, visualization, and differentially methylated cytosine/region (DMC/DMR) detection. The whole package provides new tools and will benefit bisulfite data analysis. CONCLUSION: BatMeth2 improves DNA methylation calling, particularly for regions close to indels. It is an autorun package and easy to use. In addition, a DNA methylation visualization program and a differential analysis program are provided in BatMeth2. We believe that BatMeth2 will facilitate the study of the mechanisms of DNA methylation in development and disease. BatMeth2 is an open source software program and is available on GitHub ( https://github.com/GuoliangLi-HZAU/BatMeth2 /).


Assuntos
Metilação de DNA/genética , Análise de Dados , Análise de Sequência de DNA/métodos , Sulfitos/metabolismo , Algoritmos , Humanos , Software
7.
Plant Physiol ; 171(3): 2041-54, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208249

RESUMO

Plant DNA methylation that occurs at CG, CHG, and CHH sites (H = A, C, or T) is a hallmark of the repression of repetitive sequences and transposable elements (TEs). The rice (Oryza sativa) genome contains about 40% repetitive sequence and TEs and displays specific patterns of genome-wide DNA methylation. The mechanism responsible for the specific methylation patterns is unclear. Here, we analyzed the function of OsDDM1 (Deficient in DNA Methylation 1) and OsDRM2 (Deficient in DNA Methylation 1) in genome-wide DNA methylation, TE repression, small RNA accumulation, and gene expression. We show that OsDDM1 is essential for high levels of methylation at CHG and, to a lesser extent, CG sites in heterochromatic regions and also is required for CHH methylation that mainly locates in the genic regions of the genome. In addition to a large member of TEs, loss of OsDDM1 leads to hypomethylation and up-regulation of many protein-coding genes, producing very severe growth phenotypes at the initial generation. Importantly, we show that OsDRM2 mutation results in a nearly complete loss of CHH methylation and derepression of mainly small TE-associated genes and that OsDDM1 is involved in facilitating OsDRM2-mediated CHH methylation. Thus, the function of OsDDM1 and OsDRM2 defines distinct DNA methylation pathways in the bulk of DNA methylation of the genome, which is possibly related to the dispersed heterochromatin across chromosomes in rice and suggests that DNA methylation mechanisms may vary among different plant species.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Oryza/genética , Proteínas de Plantas/metabolismo , Cromatina/genética , Imunoprecipitação da Cromatina , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Heterocromatina/genética , Heterocromatina/metabolismo , Mutação , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/genética
8.
Plant Physiol ; 172(2): 1131-1141, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27535791

RESUMO

H3K27me3 is a repressive chromatin mark of genes and is catalyzed by homologs of Enhancer of zeste [E(z)], a component of Polycomb-repressive complex 2 (PRC2), while DNA methylation that occurs in CG and non-CG (CHG and CHH, where H is A, C, or T) contexts is a hallmark of transposon silencing in plants. However, the relationship between H3K27me3 and DNA methylation in gene repression remains unclear. In addition, the mechanism of PRC2 recruitment to specific genes is not known in plants. Here, we show that SDG711, a rice (Oryza sativa) E(z) homolog, is required to maintain H3K27me3 of many developmental genes after shoot meristem to leaf transition and that many H3K27me3-marked developmental genes are also methylated at non-CG sites in the body regions. SDG711-binding and SDG711-mediated ectopic H3K27me3 also target genes methylated at non-CG sites. Conversely, mutation of OsDRM2, a major rice CHH methyltransferase, resulted in loss of SDG711-binding and H3K27me3 from many genes and their de-repression. Furthermore, we show that SDG711 physically interacts with OsDRM2 and a putative CHG methylation-binding protein. These results together suggest that the repression of many developmental genes may involve both DRM2-mediated non-CG methylation and PRC2-mediated H3K27me3 and that the two marks are not generally mutually exclusive but may cooperate in repression of developmentally regulated genes in rice.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Histonas/metabolismo , Lisina/metabolismo , Cromatina/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/genética , Lisina/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Metilação , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
BMC Genomics ; 15 Suppl 12: S11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25563301

RESUMO

BACKGROUND: Long-range chromatin interactions play an important role in transcription regulation. Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET) is an emerging technology that has unique advantages in chromatin interaction analysis, and thus provides insight into the study of transcription regulation. RESULTS: This article introduces the experimental protocol and data analysis process of ChIA-PET, as well as discusses some applications using this technology. It also unveils the direction of future studies based on this technology. CONCLUSIONS: Overall we show that ChIA-PET is the cornerstone to explore the three-dimensional (3D) chromatin structure, and certainly will lead the forthcoming wave of 3D genomics studies.


Assuntos
Cromatina/química , Cromatina/metabolismo , Análise de Sequência de DNA/métodos , Transcrição Gênica , Genômica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
10.
Mol Plant ; 16(7): 1113-1116, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37376732

RESUMO

Arabidopsis is an important model organism in plant biology and genetics, and a large number of a chromatin conformation and epigenomic datasets have been generated to study the biology in Arabidopsis. To make it easier to access the accumulated epigenomic data, a user-friendly and reproducible epigenomic database, AraENCODE was developed. It contains various datasets and resources, including chromatin conformation, epigenomic, and transcriptome data, allowing researchers to investigate the regulation of epigenetic and chromatin interactions in Arabidopsis.


Assuntos
Arabidopsis , Arabidopsis/genética , Epigenômica , Transcriptoma , Cromatina/genética , Bases de Dados Factuais
11.
Genome Biol ; 24(1): 181, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550699

RESUMO

BACKGROUND: Although spatial organization of compartments and topologically associating domains at large scale is relatively well studied, the spatial organization of regulatory elements at fine scale is poorly understood in plants. RESULTS: Here we perform high-resolution chromatin interaction analysis using paired-end tag sequencing approach. We map chromatin interactions tethered with RNA polymerase II and associated with heterochromatic, transcriptionally active, and Polycomb-repressive histone modifications in Arabidopsis. Analysis of the regulatory repertoire shows that distal active cis-regulatory elements are linked to their target genes through long-range chromatin interactions with increased expression of the target genes, while poised cis-regulatory elements are linked to their target genes through long-range chromatin interactions with depressed expression of the target genes. Furthermore, we demonstrate that transcription factor MYC2 is critical for chromatin spatial organization, and propose that MYC2 occupancy and MYC2-mediated chromatin interactions coordinately facilitate transcription within the framework of 3D chromatin architecture. Analysis of functionally related gene-defined chromatin connectivity networks reveals that genes implicated in flowering-time control are functionally compartmentalized into separate subdomains via their spatial activity in the leaf or shoot apical meristem, linking active mark- or Polycomb-repressive mark-associated chromatin conformation to coordinated gene expression. CONCLUSION: The results reveal that the regulation of gene transcription in Arabidopsis is not only by linear juxtaposition, but also by long-range chromatin interactions. Our study uncovers the fine scale genome organization of Arabidopsis and the potential roles of such organization in orchestrating transcription and development.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica , Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Redes Reguladoras de Genes , Proteínas do Grupo Polycomb/genética
12.
Cell Death Discov ; 8(1): 236, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490157

RESUMO

Skeletal muscle myogenesis is a sophisticated process controlled by genetic and epigenetic regulators. In animals, one of the key enzymes for the DNA demethylation of 5-methylcytosine is TET2. Although TET2 is essential for muscle development, the mechanisms by which TET2 regulates myogenesis, particularly the implication for muscle stem cells, remains unclear. In the present study, we employed the TET2 knockout mouse model to investigate the function of TET2 in muscle development and regeneration. We observed that TET2 deficiency caused impaired muscle stem cell proliferation and differentiation, resulting in the reduction in both myofiber number and muscle tissue size. Specifically, TET2 maintains calcium homeostasis in muscle stem cells by controlling the DNA methylation levels of the calcium pathway genes. Forced expression of the sodium/calcium exchanger protein SLC8A3 could rescue the myogenic defects in TET2 knockout cells. Our data not only illustrated the vital function of TET2 during myogenesis but also identified novel targets that contribute to calcium homeostasis for enhancing muscle function.

13.
Genome Biol ; 23(1): 197, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127735

RESUMO

BACKGROUND: It is challenging to determine the effect of DNA methylation on the epigenetic landscape and the function in higher organisms due to the lack of DNA methylation-free mutants. RESULTS: Here, the analysis of a recently generated Arabidopsis mutant completely devoid of DNA methylation reveals that DNA methylation underpins the genome-wide landscape of histone modifications. Complete loss of DNA methylation causes an upheaval of the histone modification landscape, including complete loss of H3K9me2 and widespread redistribution of active and H3K27me3 histone marks, mostly owing to the role of DNA methylation in initiating H3K9me2 deposition and excluding active marks and repressive mark H3K27me3; CG and non-CG methylation can act independently at some genomic regions while they act cooperatively at many other regions. The transcriptional reprogramming upon loss of all DNA methylation correlates with the extensive redistribution or switches of the examined histone modifications. Histone modifications retained or gained in the DNA methylation-free mutant serve as DNA methylation-independent transcriptional regulatory signals: active marks promote genome transcription, whereas the repressive mark H3K27me3 compensates for the lack of DNA hypermethylation/H3K9me2 at multiple transposon families. CONCLUSIONS: Our results show that an intact DNA methylome constitutes the scaffolding of the epigenomic landscape in Arabidopsis and is critical for controlled genome transcription and ultimately for proper growth and development.


Assuntos
Arabidopsis , Metilação de DNA , Arabidopsis/genética , Arabidopsis/metabolismo , DNA , Epigênese Genética , Epigenômica , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo
14.
Genes (Basel) ; 10(7)2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336684

RESUMO

Understanding chromatin interactions is important because they create chromosome conformation and link the cis- and trans- regulatory elements to their target genes for transcriptional regulation. Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing is a genome-wide high-throughput technology that detects chromatin interactions associated with a specific protein of interest. We developed ChIA-PET Tool for ChIA-PET data analysis in 2010. Here, we present the updated version of ChIA-PET Tool (V3) as a computational package to process the next-generation sequence data generated from ChIA-PET experiments. It processes short-read and long-read ChIA-PET data with multithreading and generates statistics of results in an HTML file. In this paper, we provide a detailed demonstration of the design of ChIA-PET Tool V3 and how to install it and analyze RNA polymerase II (RNAPII) ChIA-PET data from human K562 cells with it. We compared our tool with existing tools, including ChiaSig, MICC, Mango and ChIA-PET2, by using the same public data set in the same computer. Most peaks detected by the ChIA-PET Tool V3 overlap with those of other tools. There is higher enrichment for significant chromatin interactions from ChIA-PET Tool V3 in aggregate peak analysis (APA) plots. The ChIA-PET Tool V3 is publicly available at GitHub.


Assuntos
Cromatina , Técnicas Genéticas , Software , Humanos , Dados de Sequência Molecular , Design de Software
15.
Nat Plants ; 4(8): 554-563, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30061746

RESUMO

DNA N6-methyladenine (6mA) is a non-canonical DNA modification that is present at low levels in different eukaryotes1-8, but its prevalence and genomic function in higher plants are unclear. Using mass spectrometry, immunoprecipitation and validation with analysis of single-molecule real-time sequencing, we observed that about 0.2% of all adenines are 6mA methylated in the rice genome. 6mA occurs most frequently at GAGG motifs and is mapped to about 20% of genes and 14% of transposable elements. In promoters, 6mA marks silent genes, but in bodies correlates with gene activity. 6mA overlaps with 5-methylcytosine (5mC) at CG sites in gene bodies and is complementary to 5mC at CHH sites in transposable elements. We show that OsALKBH1 may be potentially involved in 6mA demethylation in rice. The results suggest that 6mA is complementary to 5mC as an epigenomic mark in rice and reinforce a distinct role for 6mA as a gene expression-associated epigenomic mark in eukaryotes.


Assuntos
Adenina/metabolismo , Metilação de DNA , Genoma de Planta , Oryza/genética , Domínio Catalítico , Elementos de DNA Transponíveis , Epigênese Genética , Imunoprecipitação , Espectrometria de Massas , Modelos Moleculares , Oryza/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA