Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Microb Ecol ; 85(2): 642-658, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35089393

RESUMO

Shrub removal is a common management method in forest ecosystems, but comparatively little is known regarding the effects of shrub removal on soil microbial communities among primary forest, secondary forest, and plantation forests in temperate forests, which limits our accurate assessment of sustainable management of understory vegetation removal. Given this, we used a long-term operation experiment across a contrasting mixed broadleaved-Pinus koraiensis forest, Betula platyphylla forest, and Larix gmelinii plantation forest to explore the variations of soil properties and microbial community after 5 years of shrub removal on Changbai Mountain, as well as the contribution of the soil properties and understory plant diversity to the soil microbial community. The results demonstrated that shrub removal could significantly alter soil SWC and TN, TP, and AP contents of the L. gmelinii, as well as N/P of B. platyphylla. Moreover, shrub removal also clearly improved soil bacterial Pielou_e index and Simpson index of mixed broadleaved-P. koraiensis and soil bacterial Simpson index of L. gmelinii, and decreased soil fungal Pielou_e index and Shannon index of L. gmelinii and soil bacterial Pielou_e index and soil fungal Shannon index of B. platyphylla. Identically, shrub removal notably altered the soil bacterial community composition. Soil characteristics and understory plant diversity accounted for 48.02% and 26.88%, and 45.88% and 27.57% of the variance in the bacterial and fungal community composition, respectively. This study aimed to provide an important scientific basis for the restoration and sustainable management of temperate forests in the Changbai Mountain region.


Assuntos
Microbiota , Solo , Florestas , Betula , Bactérias , China
2.
Microb Ecol ; 84(1): 285-301, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34487211

RESUMO

Pine wood nematode, Bursaphelenchus xylophilus, as one of the greatest threats to pine trees, is spreading all over the world. Plant microorganisms play an important role in the pathogenesis of nematodes. The phyllosphere and rhizosphere bacterial and fungal communities associated with healthy Pinus koraiensis (PKa) and P. koraiensis infected by B. xylophilus at the early (PKb) and last (PKc) stages were analyzed. Our results demonstrated that pine wood nematode (PWD) could increase the phyllosphere bacterial Pielou_e, Shannon, and Simpson index; phyllosphere fungal Chao 1 index, as well as rhizosphere bacterial Pielou_e, Shannon, and Simpson index; and rhizosphere fungal Pielou_e, Shannon, and Simpson index. What's more, slight shifts of the microbial diversity were observed at the early stage of infection, and the microbial diversity increased significantly as the symptoms of infection worsened. With the infection of B. xylophilus in P. koraiensis, Bradyrhizobium (rhizosphere bacteria), Massilia (phyllosphere bacteria), and Phaeosphaeriaceae (phyllosphere fungi) were the major contributors to the differences in community compositions among different treatments. With the infection of PWD, most of the bacterial groups tended to be co-excluding rather than co-occurring. These changes would correlate with microbial ability to suppress plant pathogen, enhancing the understanding of disease development and providing guidelines to pave the way for its possible management.


Assuntos
Microbiota , Nematoides , Pinus , Animais , Bactérias , Pinus/microbiologia , Doenças das Plantas/microbiologia , Rizosfera , Xylophilus
3.
J Environ Manage ; 304: 114318, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933262

RESUMO

Ecosystem service flow dynamics which establish the linkage between human and nature is essential in an ecosystem service assessment. This study constructed an ecosystem service flow model of freshwater flow then utilized it to assess the water-related ecosystem services in northeast China. We included the provision, consumption, and spatial flow of freshwater services in an index to assess the water security condition and quantified the services trans-boundary flow from the northeast forest belt (NFB) in northeast China. Our results showed that large areas (50.54%, 55.10% and 52.90%, respectively) of northeast China received upstream freshwater service in three years. The water security condition of northeast China deteriorated from 2005 to 2015 with the change of water security index considering water flow (WSIflow), mainly influenced by precipitation and agriculture water consumption. Approximately 4.16 billion m3 of freshwater service were delivered from NFB to surrounding regions demonstrating the importance of NFB in terms of ecosystem service provision. In addition, 73 key watersheds (4.71% of total area) within NFB that significantly affect the trans-boundary flow were further identified. We suggested that local government should advocate develop water-saving agriculture and livestock water quotas. Moreover, priorities should be given to protect the key watersheds within NFB in order to maintain the supply of freshwater service. This study provided a framework for exploring suitable strategies for managing water resources and laid a foundation for promoting the ecological compensation in the future.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Água Doce , Humanos , Água , Abastecimento de Água
4.
Glob Chang Biol ; 27(12): 2883-2894, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33742479

RESUMO

Biodiversity plays a fundamental role in provisioning and regulating forest ecosystem functions and services. Above-ground (plants) and below-ground (soil microbes) biodiversity could have asynchronous change paces to human-driven land-use impacts. Yet, we know very little how they affect the provision of multiple forest functions related to carbon accumulation, water retention capacity and nutrient cycling simultaneously (i.e. ecosystem multifunctionality; EMF). We used a dataset of 22,000 temperate forest trees from 260 plots within 11 permanent forest sites in Northeastern China, which are recovering from three post-logging disturbances. We assessed the direct and mediating effects of multiple attributes of plant biodiversity (taxonomic, phylogenetic, functional and stand structure) and soil biodiversity (bacteria and fungi) on EMF under the three disturbance levels. We found the highest EMF in highly disturbed rather than undisturbed mature forests. Plant taxonomic, phylogenetic, functional and stand structural diversity had both positive and negative effects on EMF, depending on how the EMF index was quantified, whereas soil microbial diversity exhibited a consistent positive impact. Biodiversity indices explained on average 45% (26%-58%) of the variation in EMF, whereas climate and disturbance together explained on average 7% (0.4%-15%). Our result highlighted that the tremendous effect of biodiversity on EMF, largely overpassing those of both climate and disturbance. While above- (ß = 0.02-0.19) and below-ground (ß = 0.16-0.26) biodiversity had direct positive effects on EMF, their opposite mediating effects (ß = -0.22 vs. ß = 0.35 respectively) played as divergent pathways to human disturbance impacts on EMF. Our study sheds light on the need for integrative frameworks simultaneously considering above- and below-ground attributes to grasp the global picture of biodiversity effects on ecosystem functioning and services. Suitable management interventions could maintain both plant and soil microbial biodiversity, and thus guarantee a long-term functioning and provisioning of ecosystem services in an increasing disturbance frequency world.


Assuntos
Biodiversidade , Ecossistema , China , Florestas , Humanos , Filogenia
5.
Proc Natl Acad Sci U S A ; 115(16): 4039-4044, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666317

RESUMO

The long-term stressful utilization of forests and grasslands has led to ecosystem degradation and C loss. Since the late 1970s China has launched six key national ecological restoration projects to protect its environment and restore degraded ecosystems. Here, we conducted a large-scale field investigation and a literature survey of biomass and soil C in China's forest, shrubland, and grassland ecosystems across the regions where the six projects were implemented (∼16% of the country's land area). We investigated the changes in the C stocks of these ecosystems to evaluate the contributions of the projects to the country's C sink between 2001 and 2010. Over this decade, we estimated that the total annual C sink in the project region was 132 Tg C per y (1 Tg = 1012 g), over half of which (74 Tg C per y, 56%) was attributed to the implementation of the projects. Our results demonstrate that these restoration projects have substantially contributed to CO2 mitigation in China.


Assuntos
Sequestro de Carbono , Carbono/análise , Conservação dos Recursos Naturais , Ecossistema , Biomassa , China , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/estatística & dados numéricos , Florestas , Pradaria , Humanos , Plantas/química , Avaliação de Programas e Projetos de Saúde , Solo/química , Movimentos da Água
6.
Am J Bot ; 105(1): 42-49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29532922

RESUMO

PREMISE OF THE STUDY: The growth limitation hypothesis (GLH) and carbon limitation hypothesis (CLH) are two dominant explanations for treeline formation. The GLH proposes that low temperature drives the treeline through constraining C sinks more than C sources, and it predicts that non-structural carbohydrate (NSC) levels are static or increase with elevation. Although the GLH has received strong support globally for evergreen treelines, there is still no consensus for deciduous treelines, which experience great asynchrony between supply and demand throughout the year. METHODS: We investigated growth and the growing-season C dynamics in a common deciduous species, Erman's birch (Betula ermanii), along an elevational gradient from the closed forest to the treeline on Changbai Mountain, Northeast China. Samples were collected from developing organs (leaves and twigs) and main storage organs (stems and roots) for NSC analysis. KEY RESULTS: Tree growth decreased with increasing elevation, and NSC concentrations differed significantly among elevations, organs, and sampling times. In particular, NSC levels varied slightly during the growing season in leaves, peaked in the middle of the growing season in twigs and stems, and increased continuously throughout the growing season in roots. NSCs also tended to increase or vary slightly in developing organs but decreased significantly in mature organs with increasing elevation. CONCLUSIONS: The decrease in NSCs with elevation in main storage organs indicates support for the CLH, while the increasing or static trends in new developing organs indicate support for the GLH. Our results suggest that the growth limitation theory may be less applicable to deciduous species' growth than to that of evergreen species.


Assuntos
Betula/crescimento & desenvolvimento , Betula/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Altitude , Metabolismo dos Carboidratos , Carbono/metabolismo , China , Estações do Ano
7.
Front Microbiol ; 14: 1158731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089536

RESUMO

Introduction: Understanding microbial gradual shifts along species replacement can help elucidate the mechanisms driving secondary succession, and predict microbial responses to changing environments. However, how climate-induced species replacement alters microbial processes, and whether microbial shifts follow predictable assembly trajectories remain unclear. Methods: Using space-for-time substitution approach, we studied shifts in bacterial and fungal communities in the succession from Leptodermis oblonga to Vitex negundo var. heterophylla shrubland in Taihang Mountain. Results and Discussion: Species replacement, induced by climate related environmental change, significantly increased the above-ground biomass of shrublands, and TP and TK contents in topsoil. The succession from L. oblonga to V. negundo var. heterophylla communities resulted in the gradually replacement of cold-tolerant microbes with warm-affinity ones, and alterations of microbial communities involved in soil biogeochemical processes. Soil and plant variables, such as above-ground biomass, soil pH, total phosphorus, and total potassium, well explained the variations in microbial communities, indicating that the coordinated changes in plant communities and soil properties during secondary succession caused accompanied shifts in microbial diversity and composition.

8.
Environ Pollut ; 326: 121512, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36967010

RESUMO

Microplastic residues pose one of the most serious environmental problems in areas where plastic mulch is used extensively. Microplastic pollution has potentially serious consequences for ecosystems and human health. Several studies have analyzed microplastics in greenhouses or laboratory climate-controlled chambers; however, field studies evaluating the effects of different microplastics on different crops in extensive farming are limited. Therefore, we selected three major crops, Zea mays (ZM, monocotyledon), Glycine max (GM, dicotyledon, aboveground-bearing), and Arachis hypogaea (AH, dicotyledon, belowground-bearing) and investigated the effect of adding polyester microplastics (PES-MPs) and polypropylene microplastics (PP-MPs). Our results demonstrate that PP-MPs and PES-MPs decreased the soil bulk density of ZM, GM, and AH. Regarding soil pH, PES-MPs increased the soil pH of AH and ZM, whereas PP-MPs decreased the soil pH of ZM, GM, and AH compared to controls. Intriguingly, different coordinated trait responses to PP-MPs and PES-MPs were observed in all crops. In general, commonly measured parameters of AH, such as plant height, culm diameter, total biomass, root biomass, PSII maximum photochemical quantum yield (Fv/Fm), hundred-gain weight, and soluble sugar tended to decrease under PP-MPs exposure; however, some indicators of ZM and GM increased under PP-MPs exposure. PES-MPs had no obviously adverse influence on the three crops, except for the biomass of GM, and even significantly increased the chlorophyll content of AH, specific leaf area, and soluble sugar of GM. Compared with PES-MPs, PP-MPs have serious negative effects on crop growth and quality, especially AH. The findings of the present study provides evidence for evaluating the impact of soil microplastic pollution on crop yield and quality in farmland and lay a foundation for future investigations on the exploration of MP toxicity mechanisms and adaptability of different crops to microplastics.


Assuntos
Microplásticos , Solo , Humanos , Fazendas , Plásticos/toxicidade , Ecossistema , Produtos Agrícolas , Qualidade dos Alimentos , Poliésteres
9.
Front Plant Sci ; 14: 1194083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746017

RESUMO

Introduction: To document the successional processes of shrub-herb communities after large-scale human disturbance, and understand how changing environmental conditions affect species replacement in semi-humid hilly areas. Methods: Utilizing the established permanent plots in the hilly area of Taihang Mountain, we evaluated temporal patterns of vegetation and soil following grass-to-shrub succession. Results and Discussion: Along secondary succession, Vitex negundo var. heterophylla gradually dominated in dry sunny slope and shared the dominance with Leptodermis oblonga in shaded slope. Herbaceous dominant species in shrub-herb communities switched from Themeda japonica, Bothriochloa ischaemum, Artemisia sacrorum, and Cleistogenes chinensis in 1986 census to B. ischaemum and A. sacrorum in 2008 census, but herb was no longer dominant in 2020 census. As succession progresses, species dominance increased while richness decreased generally, and herb cover and aboveground biomass decreased, whereas shrub height, cover, and aboveground biomass increased significantly. Soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), and total potassium (TK) in topsoil increased significantly while pH declined by 1.04 units over the past three decades. Plant communities transitioned from perennial herbs to shrub-herb and then shrub communities, and V. negundo var. heterophylla dominated in the succession of shrub-herb communities. Climate and soil properties, combined with plant attributes, together drive post-disturbance secondary succession. From a management perspective, the tight coupling between vegetation and soil under local climatic conditions should be considered to improve the fragile ecosystem in the hilly area of Taihang Mountain.

10.
Front Plant Sci ; 14: 1279963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053761

RESUMO

Introduction: The photosynthetic electron transport chain (ETC) is the bridge that links energy harvesting during the photophysical reactions at one end and energy consumption during the biochemical reactions at the other. Its functioning is thus fundamental for the proper balance between energy supply and demand in photosynthesis. Currently, there is a lack of understanding regarding how the structural properties of the ETC are affected by nutrient availability and plant developmental stages, which is a major roadblock to comprehensive modeling of photosynthesis. Methods: Redox parameters reflect the structural controls of ETC on the photochemical reactions and electron transport. We conducted joint measurements of chlorophyll fluorescence (ChlF) and gas exchange under systematically varying environmental conditions and growth stages of maize and sampled foliar nutrient contents. We utilized the recently developed steady-state photochemical model to infer redox parameters of electron transport from these measurements. Results and discussion: We found that the inferred values of these photochemical redox parameters varied with leaf macronutrient content. These variations may be caused either directly by these nutrients being components of protein complexes on the ETC or indirectly by their impacts on the structural integrity of the thylakoid and feedback from the biochemical reactions. Also, the redox parameters varied with plant morphology and developmental stage, reflecting seasonal changes in the structural properties of the ETC. Our findings will facilitate the parameterization and simulation of complete models of photosynthesis.

11.
Front Plant Sci ; 13: 868108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599899

RESUMO

Drought is expected to increase in the frequency and duration associated with climate change. Although hydraulic function and carbon (C) storage have been widely recognized as key components to plant survival under a single drought, the physiological responses to continuous drought remain largely unknown, particularly for high northern temperate and boreal forests which are sensitive to water stress. In this study, we quantified the survival, growth, gas exchange, water relations, and nonstructural carbohydrates (NSCs) in 3-year-old Jezo spruce (Picea jezoensis) seedlings responding to continuous drought stress. Seedlings were maintained in drought conditions for 392 days, covering two growing and one dormant winter season. Seedlings subjected to drought showed a significant decrease in net photosynthesis rate (A net ) and stomatal conductance (g s ) in both growing seasons, and biomass in the second growing season. The seedling mortality continuously increased to 35.6% at the experimental end. Notably, responses of C storage and leaf water potential to drought varied greatly depending on seasons. Living seedlings exposed to drought and control treatments had similar NSC concentrations in both growing seasons. However, seedlings with concentrations of both the soluble sugars and starch less than 1% in root died in the winter dormant season. In the second growing season, compared with the control treatment, droughted seedlings had significantly lower leaf water potential and stem wood-specific hydraulic conductivity (K w). Meanwhile, the leaf predawn water potential did not recover overnight. These suggest that C starvation might be an important reason for seedlings that died in the winter dormant season, while in the growing season drought may limit seedling survival and growth through inducing hydraulic failure. Such seasonal dependence in hydraulic dysfunction and C depletion may lead to higher mortality in spruce forests facing extended drought duration expected in the future.

12.
Chemosphere ; 288(Pt 1): 132413, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600006

RESUMO

There is an increasing recognition that microplastics contamination in soils has become an important threat for terrestrial ecosystems, and can interact with drought. In addition, due to the increasingly serious environmental pollution and the destruction of the ozone layer, the UV-B radiation to the earth's surface has gradually increased. However, we currently have no information about potential effects of microplastics, UV-B, and drought on plant communities. In order to make up for the vacancy, we conducted an experiment with grassland plant communities. Polyester fiber microplastics (absent, present), UV-B (fully transparent polythene film, attenuating UV-B radiation), and soil water conditions (well-watered, drought) were applied in a fully factorial design. A plant community consisting of four indigenous species and one invasive species, co-occurring in the terrestrial ecosystem of the northern temperate zone was established, and we investigated the effects of microplastics, UV-B, drought and their interactions on plant functional traits and plant community structure. We found that shoot and root biomass decreased with drought but increased with microfibers, and drought significantly decreased specific leaf area at the community level. Physiological and biochemical indexes of individual species and plant community were affected by microfibers, UV-B, drought and their interaction to a varying degree. More importantly, five species were divided into three clusters along PC1 corresponding to individuals from G. longituba and P. depressa, B. bipinnata and M. sativa, plus G. parviflora, which indicated that at the same conditions, G. parviflora would occupy unique ecological niches that affect the growth of native species. Our research offers insights into the mechanisms of the coexistence of native and invasive plants, as well as the ecological consequences of microplastics and other environment factors on plant communities.


Assuntos
Secas , Ecossistema , Humanos , Plantas , Plásticos , Raios Ultravioleta
13.
Sci Total Environ ; 820: 153185, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35065130

RESUMO

Decomposition of plant organic matter plays a key role in the terrestrial biogeochemical cycles. Sunlight has recently been identified as an important contributor to carbon [C] turnover through photodegradation, accelerating decomposition even in forest ecosystems where understorey solar irradiance remains relatively low. However, it is uncertain how C and nutrients dynamics respond to fluctuations in solar spectral irradiance caused by canopy structure (understorey vs. gaps) and season (open vs. closed canopy phenology). Spectral-attenuation treatments were used to compare litter decomposition over eight months, covering canopy phenology, in a temperate deciduous forest and an adjacent gap. Exposure to the full spectrum of sunlight increased the loss of litter C and lignin by 75% and 64% in the forest gap, and blue light was responsible for respectively 27% and 42% of that loss. Whereas in the understorey, C and lignin loss were similar among spectral-attenuation treatments over the experimental period, except prior to and during spring canopy flush when exposure to the full spectrum of sunlight promoted C loss by 15% overall, 80% of which was attributable to ultraviolet-B (UV-B) radiation. Nitrogen [N] was immobilized in the understorey during canopy flush before the canopy completely closed but N was swiftly released during canopy leaf-fall. Our study suggests that blue-driven photodegradation plays an important role in lignin decomposition and N dynamics in canopy gaps, whereas seasonal canopy phenology affecting sunlight reaching the forest floor drastically changes patterns of C and N in litter during decomposition. Hence, including sunlight dynamics driven by canopy structure and phenology would improve estimates of biogeochemical cycling in forests responding to changes in climate and land-use.


Assuntos
Ecossistema , Florestas , Clima , Folhas de Planta/metabolismo , Estações do Ano , Árvores
14.
Ying Yong Sheng Tai Xue Bao ; 33(9): 2314-2320, 2022 Sep.
Artigo em Zh | MEDLINE | ID: mdl-36131645

RESUMO

We investigated the responses of leaf and individual traits, growth, and fluorescence characteristics of seedlings of two dominant species of broad-leaved Korean pine forest in Changbai Mountain, i.e., Pinus koraiensis and Quercus mongolica, to five spectrum-attenuation treatments. Results showed that the architecture and growth of P. koraiensis and Q. mongolica seedlings were mainly regulated by ultraviolet B (UV-B) radiation and blue light. The attenuation of blue light significantly decreased leaf area ratio and relative growth rate of two species. The attenuation of UV-B radiation significantly increased leaf area ratio and relative growth rate of P. koraiensis seedlings by 41.8% and 47.7%, respectively, and significantly decreased plant height, total leaf area, and biomass accumulation of Q. mongolica seedlings. Furthermore, the attenuation of UV-B radiation significantly decreased the fluorescence regulation ability of two tree seedlings, with lower magnitude of P. koraiensis than Q. mongolica. The non-regulatory quantum yield (ΦNO) of P. koraiensis increased by 31.6%, and the ΦNPQ/ΦNO ratio, an indicator for photosynthetic fluorescence regulation ability, decreased by 37.5%. These results suggested that those two species might have evolved adaptation strategies to changes in canopy spectral compositions of their respective habitats. Q. mongolica seedlings tended to improve light capture ability through rapid morphological responses, while P. koraiensis seedlings preferred to increase carbon assimilation efficiency by adjusting fluorescence characteristics.


Assuntos
Pinus , Quercus , Carbono , China , Fluorescência , Quercus/fisiologia , Plântula , Árvores
15.
Environ Manage ; 48(6): 1122-35, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21350964

RESUMO

Studies of the history and current status of forest resources in Northeast China have become important in discussions of sustainable forest management in the region. Prior to 1998, excessive logging and neglected cultivation led to a series of problems that left exploitable forest reserves in the region almost exhausted. A substantial decrease in the area of natural forests was accompanied by severe disruption of stand structure and serious degradation of overall forest quality and function. In 1998, China shifted the primary focus of forest management in the country from wood production to ecological sustainability, adopting ecological restoration and protection as key foci of management. In the process, China launched the Natural Forest Conversion Program and implemented a new system of Classification-based Forest Management. Since then, timber harvesting levels in Northeast China have decreased, and forest area and stocking levels have slowly increased. At present, the large area of low quality secondary forest lands, along with high levels of timber production, present researchers and government agencies in China with major challenges in deciding on management models and strategies that will best protect, restore and manage so large an area of secondary forest lands. This paper synthesizes information from a number of sources on forest area, stand characteristics and stocking levels, and forest policy changes in Northeastern China. Following a brief historical overview of forest harvesting and ecological research in Northeast China, the paper discusses the current state of forest resources and related problems in forest management in the region, concluding with key challenges in need of attention in order to meet the demands for multi-purpose forest sustainability and management in the future.


Assuntos
Agricultura Florestal/história , Árvores , China , Clima , Conservação dos Recursos Naturais/métodos , Política Ambiental , Agricultura Florestal/tendências , Geografia , História do Século XX , História do Século XXI
16.
Ying Yong Sheng Tai Xue Bao ; 32(11): 3835-3844, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34898099

RESUMO

Carrying out the accounting of ecological system gross ecosystem product (GEP) is a necessary measure to promote the construction of ecological civilization system and an important measure for the integration of ecological benefits into the economic and social development evaluation system. Taking Fuzhou City as the object, we constructed an ecosystem value accounting system with the characteristics of "mountain, sea, and city" to calculate the GEP of Fuzhou City in 2015 and 2018, and compared them from the perspective of temporal and spatial changes. The results showed that the GEP of Fuzhou in 2015 and 2018 was 920.592 and 1047.242 billion yuan, respectively. The per capita GEP in 2015 and 2018 was 130200 and 143900 yuan, the supply service value of ecological products was 94.181 and 110.261 billion yuan, the value of ecological regulation was 636.42 and 598.851 billion yuan, and the service value of ecological culture was 189.991 and 338.13 billion yuan, respectively. Compared with that in 2015, the GEP of Fuzhou City in 2018 increased by 126.65 billion yuan, with an increase of 13.8%, which was mainly due to the increases in ecological product supply service and cultural service. The value of ecological regulation services decreased by 37.569 billion yuan, with a reduction of 5.9%, which was mainly due to the decreases in climate regulation, water flow regulation and water purification services. Fuzhou City took the lead in exploring the establishment of accounting system with the characteristics of "mountain, sea, and city", which could provide a "Fuzhou model" for the accounting work of other cities in Fujian Province and other regions in China, and promote the establishment of a long-term mechanism for realizing the value of ecological products.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Cidades , Clima
17.
Ying Yong Sheng Tai Xue Bao ; 32(2): 513-520, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33650360

RESUMO

We explored the effects of drought stress on photosynthetic characteristics and non-structural carbohydrate (NSC) accumulation of the timberline tree species Betula ermanii in Changbai Mountain with a drought control experiment. The results showed that drought significantly reduced the net photosynthetic rate and stomatal conductance, but increased water use efficiency (WUE) of B. ermanii seedlings. Drought dramatically improved the contents of soluble sugar and total NSC in leaves, barks, stems, and roots of B. ermanii seedlings, but significantly reduced their starch content. The stomatal conductance, photosynthetic rate and WUE decreased rapidly as the drought continued, whereas the contents of soluble sugar, starch and NSC increased and then declined. At the end of the experiment, 90% of the leaves turned yellow, and the ratios of soluble sugar to starch in the stems, barks and roots under the drought treatment were significantly higher than those in the control. These results demonstrated that B. ermanii might be a drought-avoidance species that could reduce water loss by rapidly reducing stomatal conductance and improving WUE under drought stress. B. ermanii might have evolved priority storage strategy to cope with water deficit through improving the content of soluble sugar in organs and increasing the transformation rate between starch and sugar. With the extension of drought stress, seedlings tended to die, since water stress might exceed the threshold of the plant self-regulation capacity. However, the content of NSC in organs did not decrease, suggesting that the death of B. ermanii under drought stress might not be caused by carbon starvation.


Assuntos
Secas , Plântula , Betula , Carboidratos , Fotossíntese , Folhas de Planta , Água
18.
PLoS One ; 9(2): e89572, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586881

RESUMO

Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha(-1) in 1980 to 31.0 Mg ha(-1) in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations.


Assuntos
Biomassa , Carbono/análise , Florestas , Biodiversidade , China
19.
Ying Yong Sheng Tai Xue Bao ; 24(1): 10-6, 2013 Jan.
Artigo em Zh | MEDLINE | ID: mdl-23717984

RESUMO

A sampling plot investigation was conducted to study the soil organic carbon (SOC) storage in 0-40 cm layer in 10-, 15-, 26- and 61 years old Larix gmelinii plantations in Great Xing' an Mountains of Northeast China as well as the temporal variation pattern of the SOC source/sink during the plantation management after the clear cutting of primary L. gmelinii forest. With the increasing age of the plantations, the SOC storage increased after an initial decrease, and the inflection point was at a stand age between 15- and 26-years old. Compared with that of primary forest, the SOC storage of the plantations played a role of carbon source at early stage (10-26 years old), but gradually transformed into carbon sink then, with a SOC storage of 158.91 t x hm(-2) in 61-year-old plantation. The SOC storage of the plantations increased with soil depth initially, but was higher in upper soil layer than in deeper soil layer after the stand age being 26, which implied that human disturbance had strong effects on the vertical distribution of SOC. It was considered that the appropriate cutting age for the L. gmelinii plantations in Great Xing' an Mountains could be at least 60 years old.


Assuntos
Carbono/análise , Larix/crescimento & desenvolvimento , Compostos Orgânicos/análise , Solo/química , China , Ecossistema , Fatores de Tempo
20.
PLoS One ; 8(8): e72201, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977252

RESUMO

The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.


Assuntos
Ciclo do Carbono , Carbono/química , Solo/química , Árvores/química , Altitude , Biomassa , China , Ecossistema , Florestas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA