Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 610(7933): 693-698, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224389

RESUMO

Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Mapeamento Geográfico , Microbiologia do Solo , Solo , Animais , Conservação dos Recursos Naturais/métodos , Solo/parasitologia , Invertebrados , Archaea
2.
Small ; 20(30): e2312173, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409521

RESUMO

In heterogeneous persulfate-catalyzed oxidation systems, the mechanism underlying the crystal plane effects of the catalyst on the selective conversion of reactive oxygen species (ROS) remains ambiguous. In this study, nano-Co3O4 catalysts with varying crystallinity and exposure levels of (111) crystal planes are prepared via a hydrothermal method. Compared to low crystalline catalysts, high crystallinity catalysts predominantly expose (111) planes containing higher concentrations of Co2+ and oxygen vacancies (Ov), resulting in an increase degradation efficiency of p-nitrobenzaldehyde (4-NBA) from 74.5% to 100%. Radical quenching experiments and EPR characterization reveal that the degradation of 4-NBA occurs through a radical pathway, and quantification of radicals demonstrates that increasing exposure levels of (111) planes effectively promote radical yield (CSO4•- increase from 18.2 to 172.8 µm and C•OH increase from 1 to 58.9 µm). Furthermore, XPS and DFT calculations indicate that high crystallinity catalyst possesses more Ov active sites on (111) planes. The presence of Ov not only facilitates the adsorption of PMS molecules but also enhances electron transfer from Co2+ to PMS, leading to directed formation and efficient transformation of radicals. This study presents a novel strategy for promoting efficient radical formation in persulfate-activated systems.

3.
Glob Chang Biol ; 30(5): e17295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38804108

RESUMO

Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.


Assuntos
Embriófitas , Microbiota , Microbiologia do Solo , Biodiversidade , Solo/química
4.
Environ Sci Technol ; 57(14): 5988-5998, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36995950

RESUMO

Methylmercury (MeHg) is a potent neurotoxin and has great adverse health impacts on humans. Organisms and sunlight-mediated demethylation are well-known detoxification pathways of MeHg, yet whether abiotic environmental components contribute to MeHg degradation remains poorly known. Here, we report that MeHg can be degraded by trivalent manganese (Mn(III)), a naturally occurring and widespread oxidant. We found that 28 ± 4% MeHg could be degraded by Mn(III) located on synthesized Mn dioxide (MnO2-x) surfaces during the reaction of 0.91 µg·L-1 MeHg and 5 g·L-1 mineral at an initial pH of 6.0 for 12 h in 10 mM NaNO3 at 25 °C. The presence of low-molecular-weight organic acids (e.g., oxalate and citrate) substantially enhances MeHg degradation by MnO2-x via the formation of soluble Mn(III)-ligand complexes, leading to the cleavage of the carbon-Hg bond. MeHg can also be degraded by reactions with Mn(III)-pyrophosphate complexes, with apparent degradation rate constants comparable to those by biotic and photolytic degradation. Thiol ligands (cysteine and glutathione) show negligible effects on MeHg demethylation by Mn(III). This research demonstrates potential roles of Mn(III) in degrading MeHg in natural environments, which may be further explored for remediating heavily polluted soils and engineered systems containing MeHg.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Humanos , Manganês/química , Compostos de Metilmercúrio/metabolismo , Oxidantes/química , Cisteína
5.
Environ Sci Technol ; 56(10): 6765-6773, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35483101

RESUMO

The bioaccumulation of the neurotoxin methylmercury (MeHg) in rice is a significant concern due to its potential risk to humans. Thiols have been known to affect MeHg bioavailability in microorganisms, but how thiols influence MeHg accumulation in rice plants remains unknown. Here, we investigated effects of common low-molecular-weight thiols, including cysteine (Cys), glutathione (GSH), and penicillamine (PEN), on MeHg uptake and translocation by rice plants. Results show that rice roots can rapidly take up MeHg, and this process is influenced by the types and concentrations of thiols in the system. The presence of Cys facilitated MeHg uptake by roots and translocation to shoots, while GSH could only promote MeHg uptake, but not translocation, by roots. Conversely, PEN significantly inhibited MeHg uptake and translocation to shoots. Using labeled 13Cys assays, we also found that MeHg uptake was coupled with Cys accumulation in rice roots. Moreover, analyses of comparative transcriptomics revealed that key genes associated with metallothionein and SULTR transporter families may be involved in MeHg uptake. These findings provide new insights into the uptake and translocation of MeHg in rice plants and suggest potential roles of thiol attributes in affecting MeHg bioavailability and bioaccumulation in rice.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Cisteína , Humanos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Solo , Poluentes do Solo/análise , Compostos de Sulfidrila
6.
Environ Sci Technol ; 54(13): 7952-7960, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32437137

RESUMO

Bioaccumulation of the neurotoxin methylmercury (MeHg) in rice has raised worldwide concerns because of its risks to human health. Certain microorganisms are able to degrade MeHg in pure cultures, but the roles and diversities of the microbial communities in MeHg degradation in rice paddy soils are unknown. Using a series of microcosms, we investigated MeHg degradation in paddy soils from Hunan, Guizhou, and Hubei provinces, representing three major rice production regions in China, and further characterized one of the soils from the Hunan Province for microbial communities associated with MeHg degradation. Microbial demethylation was observed in all three soils, demonstrated by significantly more MeHg degraded in the unsterilized soils than in the sterilized controls. More demethylation occurred in water-saturated soils than in unsaturated soils, but the addition of molybdate and bromoethanesulfonic acid as the respective inhibitors of sulfate reducing bacteria and methanogens showed insignificant effects on MeHg degradation. However, the addition of Cu enhanced MeHg degradation and the enrichment of Xanthomonadaceae in the unsaturated soil. 16S rRNA Illumina sequencing and metatranscriptomic analyses of the Hunan soil consistently revealed that Catenulisporaceae, Frankiaceae, Mycobacteriaceae, and Thermomonosporaceae were among the most likely microbial taxa in influencing MeHg degradation in the paddy soil, and they were confirmed by combined analyses of the co-occurrence network, random forest modeling, and linear discriminant analysis of the effect size. Our results shed additional light onto the roles of microbial communities in MeHg degradation in paddy soils and its subsequent bioaccumulation in rice grains.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Microbiota , Oryza , Poluentes do Solo , China , Humanos , Mercúrio/análise , RNA Ribossômico 16S , Solo , Poluentes do Solo/análise
7.
Environ Sci Technol ; 54(4): 2476-2488, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31971792

RESUMO

Nonradical-based advanced oxidation processes for pollutant removal have attracted much attention due to their inherent advantages. Herein we report that magnesium oxides (MgO) in CuOMgO/Fe3O4 not only enhanced the catalytic properties but also switched the free radical peroxymonosulfate (PMS)-activated process into the 1O2 based nonradical process. CuOMgO/Fe3O4 catalyst exhibited consistent performance in a wide pH range from 5.0 to 10.0, and the degradation kinetics were not inhibited by the common free radical scavengers, anions, or natural organic matter. Quantitative structure-activity relationships (QSARs) revealed the relationship between the degradation rate constant of 14 substituted phenols and their conventional descriptor variables (i.e., Hammett constants σ, σ-, σ+), half-wave oxidation potential (E1/2), and pKa values. QSARs together with the kinetic isotopic effect (KIE) recognized the electron transfer as the dominant oxidation process. Characterizations and DFT calculation indicated that the incorporated MgO alters the copper sites to highly oxidized metal centers, offering a more suitable platform for PMS to generate metastable copper intermediates. These highly oxidized metals centers of copper played the key role in producing O2•- after accepting an electron from another PMS molecule, and finally 1O2 as sole reactive species was generated from the direct oxidation of O2•- through thermodynamically feasible reactions.


Assuntos
Óxido de Magnésio , Peróxidos , Transporte de Elétrons , Cinética , Metais , Oxirredução
8.
Environ Sci Technol ; 53(21): 12330-12338, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31603332

RESUMO

Rice ingestion has been recognized as an important route of dietary exposure to neurotoxic methylmercury (MeHg) that is commonly synthesized in rice paddy soils. Although Hg methylators are known to regulate soil MeHg formation, the effect of non-Hg methylating communities on MeHg production remains unclear. Here, we collected 141 paddy soil samples from main rice-producing areas across China to identify associations between bacterial community composition (including both Hg and putative non-Hg methylators) and MeHg production. Results showed that the MeHg content in the paddy soils varied from 0.11 to 8.36 ng g-1 at a national spatial scale, which could be due to the shifts of soil microbial community composition across different areas. Our structure equation modeling suggested a strong link between bacterial community composition and MeHg content and %MeHg. More importantly, random forest analyses suggested a more significant role of putative non-Hg methylators than Hg methylators in predicting variations of soil MeHg content. The relative abundance of putative non-Hg methylators such as unclassified Xanthomonadales and Chitinophagaceae were strongly correlated with soil MeHg contents. Further, microbial network analysis revealed strong co-occurrence patterns between the putative non-Hg and Hg methylators. These findings highlight an overlooked role of non-Hg methylating communities in predicting MeHg production in paddy soils.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , China , Monitoramento Ambiental , Solo
9.
J Hazard Mater ; 465: 133122, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056276

RESUMO

Soils is a crucial reservoir influencing mercury (Hg) emissions and soil-air exchange dynamics, partially modulated by microbial reducers aiding Hg reduction. Yet, the extent to which microbial engagements contribute to soil Hg volatilization remains largely unknown. Here, we characterized Hg-reducing bacterial communities in natural and anthropogenically perturbed soil environments and quantified their contribution to soil Hg(0) volatilization. Our results revealed distinct Hg-reducing bacterial compositions alongside elevated mercuric reductase (merA) gene abundance and diversity in soils adjacent to chemical factories compared to less-impacted ecosystems. Notably, solely industry-impacted soils exhibited increased merA gene abundance along Hg gradients, indicating microbial adaption to Hg selective pressure through quantitative changes in Hg reductase and genetic diversity. Microcosm studies demonstrated that glucose inputs boosted microbial involvement and induced 2-8 fold increments in cumulative Hg(0) volatilization in industry-impacted soils. Microbially-mediated Hg reduction contributed to 41.6% of soil Hg(0) volatilization in industry-impacted soils under 25% water-holding capacity and glucose input conditions over a 21-day incubation period. Alcaligenaceae, Moraxellaceae, Nitrosomonadaceae and Shewanellaceae were identified as potential contributors to Hg(0) volatilization in the soil. Collectively, our study provides novel insights into microbially-mediated Hg reduction and soil-air exchange processes, with important implications for risk assessment and management of industrial Hg-contaminated soils.


Assuntos
Mercúrio , Poluentes do Solo , Mercúrio/análise , Carbono , Ecossistema , Bactérias/genética , Solo/química , Glucose , Poluentes do Solo/análise
10.
Adv Mater ; 36(21): e2313247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38359440

RESUMO

Low-dimensional metal halide perovskites are an emerging class of light-emitting materials for LED-based displays; however, their B-site cations are confined to ns2, d5, and d10 metals. Here, the design of divalent rare earth ions at B-site is presented and a novel Eu(II)-based iodide hybrid is reported with efficient (PLQY ≈98%) narrow-band (FWHM ≈43 nm) green emission and high thermal stability (97%@150 °C). Owing to reduced lattice vibrations and shrunken average distance of Eu(II)-iodide bonds in the face-sharing 1D-structure, photoluminescence from Eu(II) 4f-5d transition appears along with elevated crystal-field splitting of 5d energy level. The Eu(II)-based iodide hybrid is further demonstrated for color-pure green phosphor-converted LEDs with a maximum brightness of ≈396 000 cd m-2 and photoelectric efficiency of 29.2%. High-resolution micrometer-scale light-emitting diode (micro-LED) displays (2540 PPI) via the solution-processed screen is also presented. This work thus showcases a compelling narrow-band green emitter for commercial micro-LED displays.

11.
Nat Food ; 5(4): 301-311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605129

RESUMO

Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.


Assuntos
Compostos de Metilmercúrio , Oryza , Microbiologia do Solo , Poluentes do Solo , Bioacumulação , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/análise , Microbiota/efeitos dos fármacos , Oryza/metabolismo , Oryza/química , Oryza/microbiologia , Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/análise
12.
Environ Pollut ; 337: 122603, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748640

RESUMO

The neurotoxic methylmercury (MeHg) in paddy soils can accumulate in rice grains. Microbial demethylation is an important pathway of MeHg degradation in soil, but the effect of soil type on microbial degradation of MeHg remains unclear. Therefore, we investigated MeHg degradation in eight typical paddy soils and analyzed the associations between soil physiochemical properties and microbial degradation efficiencies of MeHg. Results showed that MeHg was significantly degraded in unsterilized paddy soils, and the microbial degradation efficiency ranged from 10.8% to 64.6% after a 30-day incubation. The high microbial degradation efficiency of MeHg was observed in the soils with high levels of clay content, whereas relatively low degradation efficiency was found in the red paddy soils. We identified that Paenibacillaceae was the most important microbial predictor of MeHg degradation and was positively correlated with the degradation efficiency in the soils. The abundances of these microbial taxa associated with MeHg degradation were positively correlated with clay content. In addition, Eh, pH, and SOC could influence microbial degradation of MeHg by regulating certain microbial communities. Our results indicate that soil type is crucial in driving MeHg degradation, which has important implications for the mitigation of MeHg pollution in various croplands.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Compostos de Metilmercúrio/metabolismo , Mercúrio/análise , Solo/química , Argila , Poluentes do Solo/análise , Oryza/metabolismo
13.
Adv Mater ; 35(16): e2212022, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807928

RESUMO

X-ray imaging has received sustained attention for healthcare diagnostics and nondestructive inspection. To develop photonic materials with tunable photophysical properties in principle accelerates radiation detection technologies. Here the rational design and synthesis of doped halide perovskite CsCdCl3 :Mn2+ , R4+ (R = Ti, Zr, Hf, and Sn) are reported as next generation X-ray storage phosphors, and the capability is greatly improved by trap management via Mn2+ site occupation manipulation and heterovalent substitution. Specially, CsCdCl3 :Mn2+ , Zr4+ displays zero-thermal-quenching (TQ) radioluminescence and anti-TQ X-ray-activated persistent luminescence even up to 448 K, further revealing the charge-carrier compensation and redeployment mechanisms. X-ray imaging with the resolution of 12.5 lp mm-1 is demonstrated, and convenient 3D X-ray imaging for the curved objects is realized in a time-lapse manner. This work demonstrates efficient modulation of energy traps to achieve high storage capacities and promote future research into flexible X-ray detectors.

14.
ISME J ; 17(3): 478-485, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639538

RESUMO

Methylmercury (MeHg) is a potent neurotoxin that bioaccumulates along food chains. The conversion of MeHg from mercury (Hg) is mediated by a variety of anaerobic microorganisms carrying hgcAB genes. Mangrove sediments are potential hotspots of microbial Hg methylation; however, the microorganisms responsible for Hg methylation are poorly understood. Here, we conducted metagenomic and metatranscriptomic analyses to investigate the diversity and distribution of putative microbial Hg-methylators in mangrove ecosystems. The highest hgcA abundance and expression occurred in surface sediments in Shenzhen, where the highest MeHg concentration was also observed. We reconstructed 157 metagenome-assembled genomes (MAGs) carrying hgcA and identified several putative novel Hg-methylators, including one Asgard archaea (Lokiarchaeota). Further analysis of MAGs revealed that Deltaproteobacteria, Euryarchaeota, Bacteroidetes, Chloroflexi, and Lokiarchaeota were the most abundant and active Hg-methylating groups, implying their crucial role in MeHg production. By screening publicly available MAGs, 104 additional Asgard MAGs carrying hgcA genes were identified from a wide range of coast, marine, permafrost, and lake sediments. Protein homology modelling predicts that Lokiarchaeota HgcAB proteins contained the highly conserved amino acid sequences and folding structures required for Hg methylation. Phylogenetic tree revealed that hgcA genes from Asgard clustered with fused hgcAB genes, indicating a transitional stage of Asgard hgcA genes. Our findings thus suggest that Asgard archaea are potential novel Hg-methylating microorganisms and play an important role in hgcA evolution.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Mercúrio/metabolismo , Archaea/genética , Archaea/metabolismo , Ecossistema , Metilação , Filogenia , Compostos de Metilmercúrio/metabolismo , Sedimentos Geológicos/microbiologia
15.
Sci Total Environ ; 859(Pt 1): 160001, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368385

RESUMO

Highly efficient and stable heterogeneous catalysts were desired to activate periodate (PI) for sustainable pollution control. Herein, iron-nitrogen-carbon catalyst was synthesized using a facile molten-salts mediated pyrolysis strategy (denoted as FeNC-MS) and employed to activate PI for the degradation of acetaminophen (ACE). Compared with iron-nitrogen-carbon catalyst prepared by direct pyrolysis method (marked as FeNC), FeNC-MS exhibited superior catalytic activity due to its large specific surface area (1600 m2 g-1) and the abundance of FeNx sites. The batch experiments revealed that FeNC/PI process achieved 37 % ACE removal within 20 min, while ACE removal in FeNC-MS/PI process was 98 % under the identical conditions. Integrated with electron paramagnetic resonance tests, quenching experiments, chemical probe identification, and electrochemical experiments, we demonstrated that FeNC-MS-PI complexes-mediated electron transfer was the predominant mechanism for the oxidation of ACE. Further analysis disclosed that FeNx sites in FeNC-MS were the main active sites for the activation of PI. Additionally, FeNC-MS/PI process exhibited significant resistance to humic acid and background electrolyte, and avoided the secondary pollution imposed by Fe leaching. The possible degradation pathways of ACE were proposed. The germination experiments of lettuce seeds showed that the ecotoxicity of ACE solution was significantly reduced after treatment with FeNC-MS/PI process. Overall, this study provided a facile strategy for the synthesis of efficient iron-nitrogen-carbon catalysts and gained fundamental insight into the mechanism of PI activation by iron-nitrogen-carbon catalysts for pollutants degradation.


Assuntos
Carbono , Nitrogênio , Nitrogênio/química , Carbono/química , Ferro/química , Acetaminofen/química , Peróxidos/química , Sais
16.
Nat Ecol Evol ; 7(1): 113-126, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631668

RESUMO

While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation. Plant diversity only indirectly influenced multifunctionality in urban greenspaces via changes in soil conditions that were associated with soil biodiversity. These findings were maintained after controlling for climate, spatial context, soil properties, vegetation and management practices. This study provides solid evidence that conserving soil biodiversity in urban greenspaces is key to supporting multiple dimensions of ecosystem functioning, which is critical for the sustainability of urban ecosystems and human wellbeing.


Assuntos
Ecossistema , Solo , Humanos , Parques Recreativos , Biodiversidade , Plantas
17.
Nat Commun ; 14(1): 1706, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973286

RESUMO

Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.


Assuntos
Cidades , Ecossistema , Internacionalidade , Parques Recreativos , Poluentes do Solo , Solo , Microbiota , Fatores Socioeconômicos , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/química , Plásticos
18.
Sci China Mater ; 65(4): 1103-1111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34692172

RESUMO

Perusing multimode luminescent materials capable of being activated by diverse excitation sources and realizing multi-responsive emission in a single system remains a challenge. Herein, we utilize a heterovalent substituting strategy to realize multimode deep-ultraviolet (UV) emission in the defect-rich host Li2CaGeO4 (LCGO). Specifically, the Pr3+ substitution in LCGO is beneficial to activating defect site reconstruction including the generation of cation defects and the decrease of oxygen vacancies. Regulation of different traps in LCGO:Pr3+ presents persistent luminescence and photo-stimulated luminescence in a synergetic fashion. Moreover, the up-conversion luminescence appears with the aid of the 4f discrete energy levels of Pr3+ ions, wherein incident visible light is partially converted into germicidal deep-UV radiation. The multi-responsive character enables LCGO:Pr3+ to response to convenient light sources including X-ray tube, standard UV lamps, blue and near-infrared lasers. Thus, a dual-mode optical conversion strategy for inactivating bacteria is fabricated, and this multi-responsive deep-UV emitter offers new insights into developing UV light sources for sterilization applications. Heterovalent substituting in trap-mediated host lattice also provides a methodological basis for the construction of multi-mode luminescent materials.

19.
Adv Mater ; 34(26): e2201887, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35426472

RESUMO

Near-infrared (NIR) luminescence materials with broadband emissions are necessary for the development of light-emitting diodes (LEDs) based light sources. However, most known NIR-emitting materials are limited by their low external quantum efficiency. This work demonstrates how the photoluminescence quantum efficiency of europium-activated calcium oxide (CaO:Eu) NIR phosphor can be significantly improved and stabilized at operating temperatures of LEDs. A carbon paper wrapping technology is innovatively developed and used during the solid-state sintering to promote the reduction of Eu3+ into Eu2+ . In parallel, the oxygen vacancies in the CaO lattice are repaired utilizing GeO2 decomposition. Through this process, a record-high external quantum efficiency of 54.7% at 740 nm is obtained with a thermal stability greatly improved from 57% to 90% at 125 °C. The as-fabricated NIR-LEDs reach record photoelectric efficiency (100 mA@23.4%) and output power (100 mA @ 319.5 mW). This discovery of high-performance phosphors will open new research avenues for broadband NIR LED light sources in a variety of photonics applications.

20.
J Hazard Mater ; 434: 128773, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427977

RESUMO

Various metal cations M (M = Mg2+, Ca2+, Zn2+, Cu2+, Fe3+) were doped into the tunnel of manganese octahedral molecular sieve (OMS-2). Redox-inactive metal (Ca, Mg and Zn) doped OMS-2 exhibited better peroxymonosulfate (PMS) catalytic activity than redox metal-doped Cu-OMS-2 and Fe-OMS-2. Redox-inactive metals doping improves the conductivity and reducibility of the catalyst, while transition metal doping reduces the dispersion of manganese. More importantly, the degradation of ACE can be divided into two stages. In the first stage, ACE was oxidized dominantly through mediated electron transfer process. Subsequently, singlet oxygen (1O2) gradually dominated oxidative degradation in the second stage, which was derived from the reaction between superoxide radical (O2•-) and metastable manganese intermediates. The long half-life of O2•- on the surface of OMS-2 ensured the delay generation of 1O2. This study not only provides a new idea for improving the efficiency of heterogeneous catalysts activation of PMS, but also meaningful for the in-depth study of multiple reaction mechanisms in PMS activation processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA