Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Surg Endosc ; 30(7): 2759-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26487219

RESUMO

BACKGROUND: Slow-transit constipation complicated with rectocele is a mixed constipation difficult to treat by surgery. Different hospitals and surgeons may employ different surgical procedures. The present study aims to compare the efficacy of laparoscopic subtotal colectomy (LSC) with posterior vaginal suspension and LSC with transvaginal repair for patients having refractory slow-transit constipation complicated with rectocele. METHODS: This paper is a retrospective study of 64 patients having refractory slow-transit constipation complicated with rectocele. Admitted from January 2002 to December 2012, the 64 patients were non-randomly divided into two groups: patients who underwent LSC with posterior vaginal suspension (Group A, 36 patients) and patients who underwent LSC with transvaginal repair (Group B, 28 patients). RESULTS: There was no statistically significant difference (P > 0.05) in preoperative general characteristics and Wexner constipation score between Group A and Group B. There was no statistically significant difference (P > 0.05) in operative time and intraoperative blood loss between the two groups. One month after the surgery, there was no statistically significant difference (P > 0.05) in early postoperative complications, constipation recurrence rate, degree of improvement in constipation symptoms, and Wexner constipation score between the two groups. But 1-year follow-up results show that there was statistically significant difference (P < 0.05) in constipation recurrence rate, gastrointestinal quality of life index, the degree of improvement in constipation symptoms, and Wexner constipation score between the two groups. CONCLUSION: Compared with the LSC with transvaginal repair, the LSC with posterior vaginal suspension demonstrated better efficacy in treating refractory slow-transit constipation complicated with rectocele.


Assuntos
Colectomia/métodos , Constipação Intestinal/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Complicações Pós-Operatórias/epidemiologia , Retocele/cirurgia , Vagina/cirurgia , Idoso , Perda Sanguínea Cirúrgica , Constipação Intestinal/complicações , Feminino , Humanos , Laparoscopia/métodos , Pessoa de Meia-Idade , Duração da Cirurgia , Qualidade de Vida , Retocele/complicações , Estudos Retrospectivos , Resultado do Tratamento
2.
Zhonghua Yi Xue Za Zhi ; 92(36): 2553-5, 2012 Sep 25.
Artigo em Zh | MEDLINE | ID: mdl-23158797

RESUMO

OBJECTIVE: To explore the causes of postoperative anastomotic leakage of colorectal cancer. METHODS: A total of 1462 cases with colorectal cancer undergoing laparoscopic operation and intestinal anastomosis at our department over the last decade were analyzed retrospectively. Data analysis was performed with SPSS 13.0. The risk factors were analyzed by binary Logistic regression while the annual incidence of anastomotic leakage by trend χ(2) test. RESULTS: Thirty anastomotic leakage occurred in 1462 cases with an incidence rate of 2.1%. There were significant correlations of anastomotic leakage with body built, tumor location, tumor size, operation time (χ(2) = 6.117, 50.167, 36.693, 4.481, P = 0.013, 0.000, 0.000, 0.034). However, there was no correction with gender, age or histological type (P = 0.871, 0.775, 1.000). Then the significance check of binary Logistic regression equation was performed. Tumor location was an independent risk factor of postoperative anastomotic leakage for colorectal cancer. The relative risk was 2.056. The annual incidence of anastomotic leakage was statistically insignificant (χ(2) = 1.827, P = 0.176). And the difference was. CONCLUSIONS: The occurrence of anastomotic leakage after colorectal cancer surgery is significantly correlated with body built, tumor location, tumor size and operation time. And tumor location below peritoneal reversal is an independent risk factor of anastomotic leakage.


Assuntos
Anastomose Cirúrgica/efeitos adversos , Fístula Anastomótica/etiologia , Laparoscopia/efeitos adversos , Complicações Pós-Operatórias/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/cirurgia , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
3.
Virulence ; 10(1): 58-67, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31874073

RESUMO

Streptococcus suis is an important zoonotic pathogen. The massive use of tylosin and other antibiotics in swine production has led to the emergence of resistant phenotypes of S. suis. However, there are no adequate measures available to address the problem of bacterial resistance. This study involved the use of 1/4 MIC (0.125 µg/mL) of tylosin to investigate resistance-related proteins by S. suis ATCC 700794. Our results showed that 171 proteins were differentially expressed in S. suis tested with 1/4 MIC (0.125 µg/mL) of tylosin using iTRAQ-based quantitative proteomic methods. TCS, heat shock protein and elongation factors were differentially expressed at 1/4 MIC (0.125 µg/mL) of tylosin compared to non treated, control cells. Using quantitative RT-PCR analysis, we verified the relationship between the differentially expressed proteins in S. suis with different MIC values. The data showed that expression profile for elongation factor G (fusA), elongation factor Ts (tsf), elongation factor Tu (tuf), putative histidine kinase of the competence regulon, ComD (comD), putative competence-damage inducible protein (cinA) and protein GrpE (grpE), observed in tylosin-resistant S. suis, correlated with that of S. suis ATCC 700794 at 1/4 MIC (0.125 µg/mL). The MIC of tylosin-resistant showed high-level resistance in terramycin, chlortetracycline, ofloxacin and enrofloxacin. Our findings demonstrated the importance of elongation factors, TCS and heat shock protein during development of tylosin resistance in S. suis. Thus, our study will provide insight into new drug targets and help reduce bacterial multidrug resistance through development of corresponding inhibitors.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Tilosina/farmacologia , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , Infecções Estreptocócicas/microbiologia , Estresse Fisiológico
4.
RSC Adv ; 9(62): 36088-36096, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35540619

RESUMO

Syringa oblata Lindl. (S. oblata) is a medicinal plant with effective broad-spectrum antibacterial activity, which can also inhibit Streptococcus suis biofilm formation. The processing of herbal medicine can purify medicinal materials, provide acceptable taste, reduce toxicity, enhance efficacy, influence performance and facilitate preparation. Thus, the aim of this study was to enhance the biofilm inhibition activity of S. oblata toward Staphylococcus xylosus (S. xylosus) using the best processing method. The content of rutin and flavonoids and the ability to inhibit the biofilm formation by S. oblata were examined using four processing methods. One of the best methods, the process of stir-frying S. oblata with vinegar, was optimized based on the best rutin content by response surface methodology. The histidine content and hisB gene expression of S. xylosus biofilm in vitro, resulting from stir-frying S. oblata with vinegar, were evaluated and were found to be significantly decreased and down-regulated, respectively. The results show that S. oblata stir-fried with vinegar can be used to effectively treat diseases resulting from S. xylosus infection. This is because it significantly inhibited S. xylosus biofilm formation by interfering with the biosynthesis of histidine; thus, its mechanism of action is decreasing histidine synthesis.

5.
Front Chem ; 7: 381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214565

RESUMO

Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in most biological growth and biofilm formation, suggesting that GS may be used as a promising target for antibacterial therapy. We asked whether a GS inhibitor could be found as an anti-infective agent of Staphylococcus xylosus (S. xylosus). Here, computational prediction followed by experimental testing was used to characterize GS. Sorafenib was finally determined through computational prediction. In vitro experiments showed that sorafenib has an inhibitory effect on the growth of S. xylosus by competitively occupying the active site of GS, and the minimum inhibitory concentration was 4 mg/L. In vivo experiments also proved that treatment with sorafenib significantly reduced the levels of TNF-α and IL-6 in breast tissue from mice mastitis, which was further confirmed by histopathology examination. These findings indicated that sorafenib could be utilized as an anti-infective agent for the treatment of infections caused by S. xylosus.

6.
Dalton Trans ; 47(12): 4045-4048, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29479610

RESUMO

Four novel chiral iridium(iii) complexes with triplex stereogenic centers were synthesized by introducing chiral carbon atoms into cyclometalated and ancillary ligands, and separated into eight isomers, which coincide with the old Chinese philosophy Eight Trigrams. The electron circular dichroism and circularly polarized luminescence spectra of four pairs of isomers show perfect mirror images with a dissymmetry factor (glum factor) of around 0.003.

7.
Front Microbiol ; 9: 665, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675012

RESUMO

Staphylococcus xylosus (S. xylosus) is an AT-rich and coagulase-negative Staphylococcus (CNS). It is normally regarded as non-pathogenic, however, recent studies have demonstrated that it is related to human opportunistic infections and bovine mastitis. In addition, S. xylosus strains have the ability to form biofilm. Biofilms are also involved in chronic infections and antibiotic resistance, there are only a few reports about cefquinome inhibiting S. xylosus biofilm formation and the protein targets of cefquinome. In our study, we found that sub-MICs of cefquinome were sufficient to inhibit biofilm formation. To investigate the potential protein targets of cefquinome, we used iTRAQ for the analyses of cells at two different conditions: 1/2-MIC (0.125 µg/mL) cefquinome treatment and no treatment. Using iTRAQ technique and KEGG database analysis, we found that proteins differently expression in histidine metabolism pathway may play a role in the process by which 1/2-MIC (0.125 µg/mL) cefquinome inhibits S. xylosus biofilm formation. Interestingly, we found a sharply down-regulated enzyme [A0A068E9J3 imidazoleglycerol-phosphate dehydratase (IGPD)] involved in histidine metabolism pathway in cefquinome-treated cells. We demonstrated the important role of IGPD in sub-MICs cefquinome inhibiting biofilm formation of S. xylosus by gene (hisB) knockout, IGPD enzyme activity and histidine content assays. Thus, our data sheds light on important role of histidine metabolism in S. xylosus biofilm formation; especially, IGPD involved in histidine metabolism might play a crucial role in sub-MICs cefquinome inhibition of biofilm formation of S. xylosus, and we propose IGPD as an attractive protein target of cefquinome.

8.
Front Pharmacol ; 9: 371, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713285

RESUMO

Streptococcus suis is difficult to treat and responsible for various infections in humans and pigs. It can also form biofilms and induce persistent infections. Rhizoma Coptidis is a medicinal plant widely used in Traditional Chinese Medicine. Although the inhibitory effects of Rhizoma Coptidis on biofilm formation have been investigated in several studies, the ability of Rhizoma Coptidis to inhibit S. suis biofilm formation and the underlying mechanisms have not yet been reported. In this study, we showed that sub-minimal inhibitory concentrations (25 and 50 µg mL-1) of water extracts of Rhizoma Coptidis (Coptis deltoidea C.Y.Cheng & P.K.Hsiao, obtained from Sichuan Province) were sufficient to inhibit biofilm formation, as shown in the tissue culture plate (TCP) method and scanning electron microscopy. Real-time PCR and iTRAQ were used to measure gene and protein expression in S. suis. Sub-minimum inhibitory concentrations (25 and 50 µg mL-1) of Rhizoma Coptidis water extracts inhibited S. suis adhesion significantly in an anti-adherence assay. Some genes, such as gapdh, sly, and mrp, and proteins, such as antigen-like protein, CPS16V, and methyltransferase H, involved in adhesion were significantly modulated in cells treated with 50 µg mL-1 of Rhizoma Coptidis water extracts compared to untreated cells. The results from this study suggest that compounds in Rhizoma Coptidis water extracts play an important role in inhibiting adhesion of S. suis cells and, therefore, biofilm formation.

9.
Front Chem ; 5: 98, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29177138

RESUMO

The imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in Staphylococcus xylosus (S. xylosus) for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening. However, to date, the 3D structure of IGPD protein of S. xylosus has not been solved. In this study, a series of computational techniques including homology modeling, Ramachandran Plots, and Verify 3D were performed in order to construct an appropriate 3D model of IGPD protein of S. xylosus. Nine hits were identified from 2,500 compounds by docking studies. Then, these nine compounds were first tested in vitro in S. xylosus biofilm formation using crystal violet staining. One of the potential compounds, baicalin was shown to significantly inhibit S. xylosus biofilm formation. Finally, the baicalin was further evaluated, which showed better inhibition of biofilm formation capability in S. xylosus by scanning electron microscopy. Hence, we have predicted the structure of IGPD protein of S. xylosus using computational techniques. We further discovered the IGPD protein was targeted by baicalin compound which inhibited the biofilm formation in S. xylosus. Our findings here would provide implications for the further development of novel IGPD inhibitors for the treatment of dairy mastitis.

10.
Front Pharmacol ; 8: 543, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28871227

RESUMO

Staphylococcus xylosus is an opportunistic pathogen that causes infection in humans and cow mastitis. And S. xylosus possesses a strong ability to form biofilms in vitro. As biofilm formation facilitates resistance to antimicrobial agents, the discovery of new medicinal properties for classic drugs is highly desired. Aspirin, which is the most common active component of non-steroidal anti-inflammatory compounds, affects the biofilm-forming capacity of various bacterial species. We have found that aspirin effectively inhibits biofilm formation of S. xylosus by Crystal violet (CV) staining and scanning electron microscopy analyses. The present study sought to elucidate possible targets of aspirin in suppressing S. xylosus biofilm formation. Based on an isobaric tag for relative and absolute quantitation (iTRAQ) fold-change of >1.2 or <0.8 (P-value < 0.05), 178 differentially expressed proteins, 111 down-regulated and 67 up-regulated, were identified after application of aspirin to cells at a 1/2 minimal inhibitory concentration. Gene ontology analysis indicated enrichment in metabolic processes for the majority of the differentially expressed proteins. We then used the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database to analyze a large number of differentially expressed proteins and identified genes involved in biosynthesis of amino acids pathway, carbon metabolism (pentose phosphate and glycolytic pathways, tricarboxylic acid cycle) and nitrogen metabolism (histidine metabolism). These novel proteins represent candidate targets in aspirin-mediated inhibition of S. xylosus biofilm formation at sub-MIC levels. The findings lay the foundation for further studies to identify potential aspirin targets.

11.
Dalton Trans ; 45(48): 19234-19237, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27874902

RESUMO

Iridium complexes with a chiral metal center and chiral carbons, Λ/Δ-(dfppy)2Ir(chty-R) and Λ/Δ-(dfppy)2Ir(chty-S), were synthesized and characterized. These isomers have the same steady-state photophysical properties, and obvious offsets in ECD spectra highlight both the chiral sources. Each enantiomeric couple shows mirror-image CPL bands with a dissymmetry factor in the order of 10-3.

12.
Front Microbiol ; 7: 1659, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812354

RESUMO

Streptococcus suis (S. suis) caused serious disease symptoms in humans and pigs. S. suis is able to form thick biofilms and this increases the difficulty of treatment. After growth with 1/2 minimal inhibitory concentration (MIC) of azithromycin, 1/4 MIC of azithromycin, or 1/8 MIC of azithromycin, biofilm formation of S. suis dose-dependently decreased in the present study. Furthermore, scanning electron microscopy analysis revealed the obvious effect of azithromycin against biofilm formation of S. suis. Especially, at two different conditions (1/2 MIC of azithromycin non-treated cells and treated cells), we carried out comparative proteomic analyses of cells by using iTRAQ technology. Finally, the results revealed the existence of 19 proteins of varying amounts. Interestingly, several cell surface proteins (such as ATP-binding cassette superfamily ATP-binding cassette transporter (G7SD52), CpsR (K0FG35), Cps1/2H (G8DTL7), CPS16F (E9NQ13), putative uncharacterized protein (G7SER0), NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (G5L259), putative uncharacterized protein (G7S2D6), amino acid permease (B0M0G6), and NsuB (G5L351)) were found to be implicated in biofilm formation. More importantly, we also found that azithromycin affected expression of the genes cps1/2H, cpsR and cps16F. Especially, after growth with 1/2 MIC of azithromycin and 1/4 MIC of azithromycin, the capsular polysaccharide content of S. suis was significantly higher.

13.
J Proteomics ; 116: 1-14, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25579403

RESUMO

Streptococcus suis (S. suis) is a swine pathogen and also a zoonotic agent. Biofilms of S. suis may cause persistent infections by the host immune system and antibiotics. Sub-minimal inhibitory concentration (sub-MIC) of erythromycin can inhibit biofilm formation in bacteria. Here, we performed comparative proteomic analyses of cells at two different conditions: sub-MIC erythromycin treated and nontreated cells. Using iTRAQ strategy, we found some novel proteins that involved in biofilm formation. 79 differentially expressed proteins were identified in sub-MIC erythromycin inhibiting planktonic cell when the protein had both a fold-change of more that a ratio >1.2 or <0.8 (p-value <0.05). Several cell surface proteins (such as Primosomal protein N', l-fucose isomerase, and ABC superfamily ATP binding cassette transporter, membrane protein), as well as those involved in Quorum-sensing, were found to be implicated in biofilm formation. Overall, our results indicated that cell surface proteins played an important role in biofilm formation. Quorum-sensing played a crucial role leading to biofilm formation. ABC superfamily ATP binding cassette transporter, membrane protein and comD might act as channels for erythromycin uptake in Quorum-sensing system. Thus, our data analyzed rough regulatory pathways of biofilm formation that might potentially be exploited to deal with biofilm infections of S. suis. This article is part of a Special Issue entitled: Microbial Proteomics. BIOLOGICAL SIGNIFICANCE: In this study, we identified many proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with biofilm formation of S. suis and target spot of erythromycin. Therefore, our manuscript represents the most comprehensive analysis of protein profiles of biofilm formation of S. suis inhibited by sub-MIC erythromycin and provides new proteomic information about biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteoma/metabolismo , Proteômica , Streptococcus suis/fisiologia
14.
Dalton Trans ; (47): 10563-9, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20023880

RESUMO

Three N,N-bidentate ligands, 5,5'-dibromo-2,2-bipyridine (L1) and two carbazole containing ligands of 5-bromo-5'-carbazolyl-2,2-bipyridine (L2), 5,5'-dicarbazolyl-2,2'-bipyridine (L3), and their corresponding rhenium Re(CO)3Cl(L) complexes (ReL1-ReL3) have been successfully synthesized and characterized by elemental analysis, 1H NMR and IR spectra. Their photophysical properties and thermal analysis, along with the X-ray crystal structure analysis of L3 and complexes ReL1 and ReL3 are also described. In CH2Cl2 solution at room temperature, all complexes display intense absorption bands at ca. 220-350 nm, which can be assigned to spin-allowed intraligand (pi-->pi*) transitions, and the low energy broad bands in the 360-480 nm region are attributed to the metal to ligand charge-transfer d(Re)-->pi* (diimine) (MLCT). The introduction of carbazole moieties improves the MLCT absorption and molar extinction coefficient of these complexes. Upon excitation at the peak maxima, all complexes show strong emissions around 620 nm, which are assigned to d(Re)-->pi* (diimine) MLCT phosphorescence. The photoluminescence lifetime decay of Re(I) complexes were measured and the quantum efficiencies of the rhenium(I) complexes were calculated by using air-equilibrated [Ru(bpy)3]2+ x 2 Cl- aqueous solution as standard (phi(std) = 0.028). The complexes with appended carbazole moieties exhibit enhanced luminescence performances relative to ReL1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA