RESUMO
With the emergence of fifth-generation (5G) cellular networks, millimeter-wave (mmW) and terahertz (THz) frequencies have attracted ever-growing interest for advanced wireless applications. The traditional printed circuit board materials have become uncompetitive at such high frequencies due to their high dielectric loss and large water absorption rates. As a promising high-frequency alternative, liquid crystal polymers (LCPs) have been widely investigated for use in circuit devices, chip integration, and module packaging over the last decade due to their low loss tangent up to 1.8 THz and good hermeticity. The previous review articles have summarized the chemical properties of LCP films, flexible LCP antennas, and LCP-based antenna-in-package and system-in-package technologies for 5G applications, although these articles did not discuss synthetic LCP technologies. In addition to wireless applications, the attractive mechanical, chemical, and thermal properties of LCP films enable interesting applications in micro-electro-mechanical systems (MEMS), biomedical electronics, and microfluidics, which have not been summarized to date. Here, a comprehensive review of flexible LCP technologies covering electric circuits, antennas, integration and packaging technologies, front-end modules, MEMS, biomedical devices, and microfluidics from microwave to THz frequencies is presented for the first time, which gives a broad introduction for those outside or just entering the field and provides perspective and breadth for those who are well established in the field.
RESUMO
To treat high-salt urea wastewater by microbial hydrolysis, it is necessary to overcome the dual problems of incomplete removal of nitrogen (N) from mixed strains and inhibition of microbial activity by high salt (NaCl) concentrations. In this paper, the mechanism of NaCl tolerance of Halomonas sp. H36 was investigated. Using molecular biology and enzymatic methods, it was proven that the strain's N-removal enzymes (urease; ammonia monooxygenase, AMO; nitrite reductase, NIR; nitrate reductase, NAR) played a key role in the removal of N, and the N-removal pathway was clarified. For the strain used to treat simulated ship domestic sewage, the urea nitrogen (CO(NH2)2-N)-removal rate was 88.52%, the ammonia nitrogen (NH4+-N)-removal rate was 91.16%, the total nitrogen (TN)-removal rate was 90.25%, and nitrite nitrogen (NO2--N) and nitrate nitrogen (NO3--N) did not accumulate. It was proven for the first time that Halomonas sp. H36 has the function of simultaneous urea hydrolysis-nitrification-denitrification with urea as the initial substrate and can simultaneously remove urea nitrogen and inorganic nitrogen from high-salt urea wastewater.
Assuntos
Halomonas , Águas Residuárias , Desnitrificação , Nitrogênio/metabolismo , Cloreto de Sódio/metabolismo , Salinidade , Processos Heterotróficos , Nitrificação , Reatores BiológicosRESUMO
Pathogenic pathogens invade the human body through various pathways, causing damage to host cells, tissues, and their functions, ultimately leading to the development of diseases and posing a threat to human health. The rapid and accurate detection of pathogenic pathogens in humans is crucial and pressing. Nucleic acid detection offers advantages such as higher sensitivity, accuracy, and specificity compared to antibody and antigen detection methods. However, conventional nucleic acid testing is time-consuming, labor-intensive, and requires sophisticated equipment and specialized medical personnel. Therefore, this review focuses on advanced nucleic acid testing systems that aim to address the issues of testing time, portability, degree of automation, and cross-contamination. These systems include extraction-free rapid nucleic acid testing, fully automated extraction, amplification, and detection, as well as fully enclosed testing and commercial nucleic acid testing equipment. Additionally, the biochemical methods used for extraction, amplification, and detection in nucleic acid testing are briefly described. We hope that this review will inspire further research and the development of more suitable extraction-free reagents and fully automated testing devices for rapid, point-of-care diagnostics.
Assuntos
Ácidos Nucleicos , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao LeitoRESUMO
This paper investigates an anti-disturbance sliding mode control strategy for a rigid satellite system with external disturbance under the prescribed performance constraints. An interval observer is firstly introduced to generate the interval estimation of the attitude angular velocity. Then a finite time identical disturbance reconstruction strategy is developed by using the interval estimation. Based on the novel performance function and error transformation constraints, the attitude tracking error is converted into a new error system that guarantees the desired transient and steady-state responses for the tracking error. Then, by introducing the reconstructed disturbance, a finite time anti-disturbance controller is constructed with the backstepping method. The stability of the strategy is guaranteed by the Lyapunov stability method. Finally, simulation results demonstrate the effectiveness of the proposed approach.
RESUMO
The fault detection and estimation problems for the physical layer network in the cyber-physical systems with unknown external disturbances are investigated in this study. Both bias fault and loss of efficiency scenarios are considered for the actuators. Based on the adaptive threshold method and sliding mode observer approach, a distributed fault detection observer (DFDO) is constructed for each physical layer node to detect the occurrence of actuator faults. Then a relative global estimation error system is defined for the distributed fault estimation observer (DFEO). Compared with the existing results, the proposed DFEO can provide the estimation for not only the actuator bias faults but also the actuators' efficiency factors under the impact of exogenous disturbance with two gain dynamic update processes. Finally, the feasibility and effectiveness of the given DFDO and the DFEO are examined by Lyapunov stability method and the simulation results.