Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur Spine J ; 30(1): 79-87, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226482

RESUMO

PURPOSES: To explore the function of endplate epiphyseal ring in OLIF stand-alone surgery using a biomechanical model to reduce the complications of endplate collapse and cage subsidence. METHODS: In total, 24 human cadaveric lumbar function units (L1-2 and L3-4 segments) were randomly assigned to two groups. The first group was implanted with long fusion cages which engaged with both inner and outer regions of epiphyseal ring (Complete Span-Epiphyseal Ring, CSER). Those engaged with only the inner half of epiphyseal ring were the second group (Half Span-Epiphyseal Ring, HSER). Each group was divided into two subgroups [higher cage-height (HH) and normal cage-height (NH)]. Specimens were fixed in testing cups and compressed at approximately 2.5 mm/s, until the first sign of structural failure. Trabecular structural damage was analyzed by Micro-CT, as well as the difference of bone volume fraction (BV/TV), trabecular thickness (Tb.Th) et al. in different regions. RESULTS: Endplate collapse was mainly evident in the inner region of epiphyseal ring, where trabecular injury of sub-endplate bone was most concentrated. Endplate collapse incidence was significantly higher in HSER than CSER specimens (P = 0.017). A structural failure occurred at a lower force in HSER (1.41 ± 0.34 KN) compared with CSER (2.44 ± 0.59 KN). HH subgroups failed at a lower average force than NH subgroups. Micro-CT results showed a more extensive trabecular fracture in HSER specimens compared to CSER specimens, especially in HH subgroup. CONCLUSIONS: Endplate collapse is more likely to occur with short half span cages than complete span cages, and taller cages compared with normal height cages. During OLIF surgery, we should choose cages matching intervertebral disc space height and place the cages spanning over the whole epiphyseal ring to improve support strength.


Assuntos
Fusão Vertebral , Fenômenos Biomecânicos , Cadáver , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Região Lombossacral , Coluna Vertebral
2.
J Cell Biochem ; 120(2): 1643-1650, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30324654

RESUMO

Atherosclerosis has been recognized as a chronic inflammatory disease, which can harden the vessel wall and narrow the arteries. MicroRNAs exhibit crucial roles in various diseases including atherosclerosis. However, so far, the role of miR-328 in atherosclerosis remains barely explored. Therefore, our study concentrated on the potential role of miR-328 in vascular endothelial cell injury during atherosclerosis. In our current study, we observed that oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) apoptosis and inhibited cell viability dose-dependently and time-dependently. In addition, indicated dosage of ox-LDL obviously triggered HUVECs inflammation and oxidative stress process. Then, it was found that miR-328 in HUVECs was reduced by ox-LDL. HUVECs apoptosis was greatly repressed and cell survival was significantly upregulated by overexpression of miR-328. Furthermore, mimics of miR-328 rescued cell inflammation and oxidative stress process induced by ox-LDL. Oppositely, inhibitors of miR-328 strongly promoted ox-LDL-induced endothelial cells injury in HUVECs. By using bioinformatics analysis, high-mobility group box-1 (HMGB1) was predicted as a downstream target of miR-328. HMGB1 has been reported to be involved in atherosclerosis development. The correlation between miR-328 and HMGB1 was validated in our current study. Taken these together, it was implied that miR-328 ameliorated ox-LDL-induced endothelial cells injury through targeting HMGB1 in atherosclerosis.

3.
Langmuir ; 32(43): 11321-11327, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491270

RESUMO

Water nanobubbles manifest fascinatingly higher mechanical strength, higher thermal stability, and longer lifetime than macroscopic bubbles; thus, they provide an important impact in applications in the biomedical and chemical industries. However, a detailed understanding of the mechanism behind these mysteries of nanobubbles remains a challenge. Consistency between quantum computations and Raman spectrometric measurements confirmed our predictions that a nanobubble skin shares the same supersolidity with molecular clusters, skins of bulk water, and water droplets because of molecular undercoordination (fewer than four nearest molecular neighbors). Molecular undercoordination (coordination number Zcluster < Zsurface < Zbubble < Zbulk = 4) shortens/extends the H-O/O:H bond and stiffens/softens its corresponding stretching phonons, whose frequency shift is proportional to the square root of the cohesive energy and inversely proportional to the segmental length. The strongly polarized O:H-O bond slows the molecular dynamics and increases the viscosity. The freezing temperature is lowered by the softened O:H bond, and the melting temperature is enhanced by the stiffened H-O bond. Therefore, the supersolid skin makes the nanobubbles thermally more stable, less dense, and stiffer and slows the dynamics of their molecular motion.

4.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679220

RESUMO

To study the creep and property degradation behavior of adhesive joints under the coupling action of temperature, humidity and load, polyurethane shear joints were prepared and tested. Different static loads were applied to joints at high temperature (80 °C) and high temperature and humidity (80 °C/95% RH) to test and analyze the creep deformation, and a suitable creep model was established. At the same time, the performance degradation test of the joints under the effect of multifactor coupling was carried out to obtain the variation law of the failure load, and the failure mechanism was discussed based on the failure section. The research shows that the creep strain of the joint at high temperature and humidity was significantly larger than that at high temperature, and the failure fracture time was shorter, in which water molecules played a role of softening and hydrolysis. The viscoelastic multi-integral creep model was used to analyze and predict the creep behavior of the joints. It was found that the creep model could better describe the creep behavior of the joints under uniaxial constant loading. Under the coupling effect of temperature, humidity and load, the failure load decreased with time, and with the increase in static load, the decline range and rate of failure load increased. It was found that the mechanical properties in the high temperature and humidity environment decreased significantly more than those in the high temperature environment. When a static load was applied during creep, cracks easily occurred inside the adhesive layer, and water molecules easily diffused inside the cracks, which increased the decay rate of the mechanical properties. This study provides good theoretical significance and engineering value for the application of polyurethane adhesion structures in rail vehicles.

5.
J Phys Chem A ; 116(30): 7892-7, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22716312

RESUMO

Incorporating the tight-binding theory and the bond order-length-strength (BOLS) correlation into the X-ray photoelectron spectra of Ag(111) and (100) surfaces and the Auger electron spectra of Ag nanoparticles deposited on Al2O3 and CeO2 substrates has led to quantitative information of the 3d5/2 and the valence binding energies of an isolated Ag atom and their shifts upon bulk, defect, surface, and nanocrystal formation. It is clarified that the globally positive energy shifts originate from the undercoordination-induced Goldschmidt-Pauling bond contraction and the associated local quantum entrapment and the heterocoordination-induced bond nature alteration at the particle-substrate interfaces. Perturbation to the Hamiltonian by atomic ill-coordination dictates the energy shift that is proportional to the bond energy at equilibrium. Theoretical reproduction of the measured spectroscopic data derived that the 3d5/2 energy of an isolated Ag atom shifts from 363.02 to 367.65 eV and the valence band center from 0.36 to 8.32 eV upon bulk formation. The extended Wagner plots revealed the coefficients of valence recharging and potential screening to be 1.21 and 1.56 for Ag interacting with Al2O3 substrate and 1.15 and 1.50 for Ag with CeO2, respectively. Exercises exemplify the enhanced capabilities of XPS and AES in determining quantitative information regarding the evolution of the local bond length, bond energy, binding energy density, and atomic cohesive energy, with the coordination and chemical environment.

6.
Front Cardiovasc Med ; 9: 975640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158838

RESUMO

It has been reported that atherosclerosis (AS) is the basis of the development of coronary artery disease (CAD). In addition, a previous study demonstrated that long non-coding RNA LINC00452 was notably downregulated in the whole blood of patients with CAD. However, the role of LINC00452 in the progression of AS remains unclear. Therefore, to mimic AS in vitro, HUVECs were treated with 100 µg/ml oxLDL for 24 h. Reverse transcription-quantitative PCR was performed to detect the expression levels of LINC00452 and IGF1R in HUVECs. Additionally, the cell angiogenetic ability was assessed by tube formation assay, while dual-luciferase reporter assay was carried out to explore the association among LINC00452, miR-194-5p, and IGF1R. The results showed that LINC00452 was downregulated in oxLDL-treated HUVECs. In addition, HUVEC treatment with oxLDL significantly inhibited cell viability, proliferation, and angiogenesis. However, the above effects were all reversed by LINC00452 overexpression. Furthermore, LINC00452 overexpression in HUVECs remarkably inhibited oxLDL-induced cell apoptosis and endothelial to mesenchymal transition. In addition, LINC00452 overexpression could markedly reverse oxLDL-induced inhibition of angiogenesis in HUVEC. The results of dual-luciferase reporter assay indicated that LINC00452 could bind with miR-194-5p. In addition, IGF1R was identified as a downstream target of miR-194-5p. And LINC00452 was able to regulate the miR-194-5p/IGF1R axis in HUVECs. Moreover, LINC00452 overexpression obviously reversed oxLDL-mediated growth inhibition of HUVEC via regulating the miR-194-5p/IGF1R axis. Overall, the current study demonstrated that LINC00452 overexpression reversed oxLDL-induced growth inhibition of HUVECs via regulating the miR-194-5p/IGF1R axis, thus providing a potential beneficial targets for AS.

7.
Eur J Histochem ; 66(4)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36128773

RESUMO

Atherosclerosis is a disease in which lipids and inflammatory factors accumulate on the walls of arteries, forming plaques that eventually block the flow of blood. Polydatin was derived from plant knotweed, which could play an important role in inhibiting the progression of atherosclerosis. However, the mechanism by which polydatin regulates the genesis and development of atherosclerosis remains unclear. To detect the function of polydatin in atherosclerosis, the proliferation, apoptosis and migration of human umbilical vein endothelial cells (HUVECs) was detected using 5-ethynyl-2'-deoxyuridine staining, flow cytometry and transwell assays, respectively. In addition, the branch points and capillary length of HUVECs were observed using a tube formation assay, and the lipid accumulation was tested by Oil-red O staining assay. Dual luciferase reporter assays were performed to confirm the association between microRNA (miR)-26a-5p and BH3 interacting domain death agonist (BID) in HUVECs. The data suggested oxidized low-density lipoprotein (oxLDL) notably inhibited the viability of HUVECs in a dose-dependent manner, and polydatin reversed the oxLDL-induced inhibition of HUVECs viability and proliferation. In addition, polydatin inhibited the apoptosis, migration and epithelial mesenchymal transition (EMT) process in oxLDL-treated HUVECs. Polydatin reversed oxLDL-induced lipid accumulation and angiogenesis inhibition in HUVECs. Furthermore, BID was targeted by miR-26a-5p, and polydatin reversed the oxLDL-induced apoptosis of HUVECs via regulating the miR-26a-5p/BID axis. In summary, polydatin reversed the oxLDL-induced apoptosis of HUVECs via regulating the miR-26a-5p/BID axis. Therefore, polydatin could act as a new agent for atherosclerosis treatment.


Assuntos
Aterosclerose , MicroRNAs , Apoptose , Aterosclerose/genética , Glucosídeos , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipoproteínas LDL/farmacologia , MicroRNAs/genética , Estilbenos
8.
Front Microbiol ; 13: 1064252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504785

RESUMO

The beneficial effects of biochar addition during composting have been proved for many feedstocks, like manures and crop straws. However, the effect of biochar on the quality of composting product with seaweed as the feedstock and the bacterial response has not been investigated. In this study, the wheat straw biochar addition on the quality of the composting product and the bacterial response was explored at the rate of 0-10%. The results showed that biochar addition at the optimal rate (5%, w/w) could increase the germination index and the ratio of the optical density of humic acid at 460 nm to that at 660 nm (E4/E6) of the composting product, which indicated the decreased biotoxicity and enhanced compost maturity. The significant increase of the nitrate nitrogen (NO3 --N) content of the composting product proved the improvement of N cycling during composting process with biochar addition. The bacterial community of composting product was shifted and the relative abundance of some beneficial taxa (e.g., Muricauda and Woeseia) was significantly increased with biochar addition. Furthermore, the relative abundance of some bacterial genes related to amino acid metabolism and carbohydrate metabolism was also increased with biochar addition. The results of our study provided the positive effect of biochar addition on the composting of seaweed and could help to produce high quality seaweed fertilizer by composting with biochar addition.

9.
Zhonghua Xin Xue Guan Bing Za Zhi ; 39(10): 946-9, 2011 Oct.
Artigo em Zh | MEDLINE | ID: mdl-22321281

RESUMO

OBJECTIVE: To evaluate the impact of resveratrol on coronary collateral circulation in pigs suffered from experimental acute coronary occlusion. METHODS: Eighteen healthy pigs were randomly divided into 3 groups: resveratrol group, nitroglycerin group and control group. Animal model of acute coronary occlusion was established through PTCA method, and the blood flow spectrum in the left circumflex artery (LCX) was detected using intracoronary Doppler ultrasound. RESULTS: The average peak velocity (APV) in infarction correlation artery (IRA) was significantly decreased immediately after coronary occlusion [(0.85 ± 0.25) cm/s vs. (24.83 ± 3.43) cm/s, P < 0.05]. The APV remained unchanged during 0, 30 and 60 minutes after the occlusion. Reversed or bidirectional blood flow was observed and the APV increased significantly [(9.22 ± 0.80) cm/s vs. (0.84 ± 0.21) cm/s, (8.93 ± 1.28) cm/s vs. (0.86 ± 0.26) cm/s respectively, P < 0.05] after the coronary injection of resveratrol (2 mg) or nitroglycerin (0.3 mg). There was no significant difference in peak APV between the resveratrol and nitroglycerin groups. The duration of increased APV was significantly longer in resveratrol group than that in nitroglycerin group [(58.83 ± 6.15) min vs. (21.80 ± 5.79) min, P < 0.05]. CONCLUSIONS: The collateral circulation after acute coronary occlusion was obviously insufficient in pigs. Resveratrol could significantly improve the blood flow in coronary collateral circulation after acute occlusion in this model.


Assuntos
Antioxidantes/farmacologia , Oclusão Coronária/tratamento farmacológico , Estilbenos/farmacologia , Animais , Circulação Colateral , Circulação Coronária/efeitos dos fármacos , Vasos Coronários , Modelos Animais de Doenças , Coração , Hemodinâmica , Nitroglicerina , Resveratrol , Suínos
10.
Polymers (Basel) ; 13(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34771300

RESUMO

Polyurethane adhesive and aluminum alloy were selected to make adhesive joints. Butt joints tested at different loading angles (0°, 45°, and 90°) using a modified Arcan fixture were selected to represent three stress states (normal stress, normal/shear combined stress, and shear stress, respectively). Firstly, the accelerated aging tests were carried out on the joints in a hygrothermal environment (80 °C/95% RH). The quasi-static tests were carried out at different temperatures (-40 °C, 20 °C, and 80 °C) for the joints after hygrothermal aging for different periods. The variation rules of the joints' mechanical properties and failure modes with different aging levels were studied. The results show that the failure load of the joints was obviously affected by stress state and temperature. In the low-temperature test, the failure load of the joints decreased most obviously, and the BJ was the most sensitive to temperature, indicating that the failure load decreased more with the increase of the normal stress ratio in the joint. Through macroscopic and SEM analysis of the failure section, it was found that the hydrolysis reaction of polyurethane adhesive itself and the interface failure of the joints were the main reasons for the decrease of joint strength. The failure models were established to characterize the adhesive structure with different aging levels at service temperature.

11.
Medicine (Baltimore) ; 100(27): e26536, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34232191

RESUMO

BACKGROUND: This meta-analysis aimed to synthesize randomized controlled trials to evaluate the effects of enhanced external counterpulsation (EECP) on exercise capacity and quality of life in patients with chronic heart failure (CHF). METHODS: Both English and Chinese databases were searched from their inception to June 30, 2020 (PubMed, EMBASE, Cochrane Library, CINAHL (EBSCO), Web of Science for English publications and Chinese Biomedical Database, China National Knowledge Infrastructure, Wanfang Data for Chinese publication). Titles, abstracts, and full-text articles were screened against study inclusion criteria: randomized controlled trials studying EECP intervention for patients with CHF. The meta-analysis was conducted with Revman 5.3 or STATA 16.0. RESULTS: Eight randomized controlled trials were included. EECP induced significant improvement in 6-min walking distance (WMD=84.79 m; 95% CI, 47.64 to 121.95; P < .00001). Moreover, EECP was beneficial for left ventricular ejection fraction (SMD = 0.64; 95% CI,0.29 to 1.00; P = .0004), and N-terminal pro brain natriuretic peptide (SMD = -0.61; 95%CI, -1.20 to -0.01; P = 0.04).However, compared with the control groups, EECP did not significantly reduce the Minnesota Living with Heart Failure Questionnaire scores(WMD, -9.28; 95% CI, -19.30 to 0.75; P = 0.07). CONCLUSIONS: Despite heterogeneity and risk of bias, this meta-analysis confirms that EECP can improve exercise capacity in CHF patients, especially the elderly. However, the evidence that EECP improves the quality of life in patients with CHF is still insufficient. More and larger well-designed randomized controlled trials are still warranted. REGISTRATION INFORMATION: PROSPERO registration no. CRD 42020188848.


Assuntos
Contrapulsação/métodos , Insuficiência Cardíaca/terapia , Qualidade de Vida , Volume Sistólico/fisiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/psicologia , Humanos
12.
Chem Rev ; 112(5): 2833-52, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22339351
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA