RESUMO
Phagocytosis and degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is fundamental to vision. Autophagy is also responsible for bulk degradation of cellular components, but its role in POS degradation is not well understood. We report that the morning burst of RPE phagocytosis coincided with the enzymatic conversion of autophagy protein LC3 to its lipidated form. LC3 associated with single-membrane phagosomes containing engulfed POS in an Atg5-dependent manner that required Beclin1, but not the autophagy preinitiation complex. The importance of this process was verified in mice with Atg5-deficient RPE cells that showed evidence of disrupted lysosomal processing. These mice also exhibited decreased photoreceptor responses to light stimuli and decreased chromophore levels that were restored with exogenous retinoid supplementation. These results establish that the interplay of phagocytosis and autophagy within the RPE is required for both POS degradation and the maintenance of retinoid levels to support vision.
Assuntos
Autofagia , Células Fotorreceptoras de Vertebrados/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Visão Ocular , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Bovinos , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose , Fagossomos/metabolismo , Retinoides/metabolismoRESUMO
BACKGROUND: Transgenic mice with cardiac-restricted overexpression of tumor necrosis factor (MHCsTNF mice) develop progressive myocardial fibrosis, diastolic dysfunction, and adverse cardiac remodeling. Insofar as tumor necrosis factor (TNF) does not directly stimulate fibroblast collagen synthesis, we asked whether TNF-induced fibrosis was mediated indirectly through interactions between mast cells and cardiac fibroblasts. METHODS AND RESULTS: Cardiac mast cell number increased 2 to 3 fold (P<0.001) in MHCsTNF mice compared with littermate controls. Outcrossing MHCsTNF mice with mast cell-deficient (c-kit(-/-)) mice showed that the 11-fold increase (P<0.001) in collagen volume fraction in MHCsTNF/c-kit(+/-) mice was abrogated in MHCsTNF/c-kit(-/-) mice, and that the leftward shifted left ventricular pressure-volume curve in the MHCsTNF/c-kit(+/-) mice was normalized in the MHCsTNF/c-kit(-/-) hearts. Furthermore, the increase in transforming growth factor ß1 and type I transforming growth factor ß receptor messenger RNA levels was significantly (P=0.03, P=0.01, respectively) attenuated in MHCsTNF/c-kit(-/-) when compared with MHCsTNF/c-kit(+/-) mice. Coculture of fibroblasts with mast cells resulted in enhanced α-smooth muscle actin expression, increased proliferation and collagen messenger RNA expression, and increased contraction of 3-dimensional collagen gels in MHCsTNF fibroblasts compared with littermate fibroblasts. The effects of mast cells were abrogated by type I transforming growth factor ß receptor antagonist NP-40208. CONCLUSIONS: These results suggest that increased mast cell density with resultant mast cell-cardiac fibroblast cross-talk is required for the development of myocardial fibrosis in inflammatory cardiomyopathy. Cardiac fibroblasts exposed to sustained inflammatory signaling exhibit an increased repertoire of profibrotic phenotypic responses in response to mast cell mediators.
Assuntos
Comunicação Celular/imunologia , Fibrose Endomiocárdica/patologia , Fibroblastos/patologia , Mastócitos/patologia , Miocardite/patologia , Miocárdio/patologia , Fator de Necrose Tumoral alfa/genética , Animais , Fibrose Endomiocárdica/imunologia , Fibrose Endomiocárdica/fisiopatologia , Fibroblastos/imunologia , Expressão Gênica/imunologia , Mastócitos/imunologia , Camundongos , Camundongos Transgênicos , Miocardite/imunologia , Miocardite/fisiopatologia , Miocárdio/imunologia , Fenótipo , Cultura Primária de Células , Pteridinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Macroautophagy/autophagy is an intracellular stress survival and recycling system whereas phagocytosis internalizes material from the extracellular milieu; yet, both pathways utilize lysosomes for cargo degradation. Whereas autophagy occurs in all cells, phagocytosis is performed by cell types such as macrophages and the retinal pigment epithelial (RPE) cells of the eye where it is supported by the noncanonical autophagy process termed LC3-associated phagocytosis (LAP). Autophagy and LAP are distinct pathways that use many of the same mediators and must compete for cellular resources, suggesting that cells may regulate both processes under homeostatic and stress conditions. Our data reveal that RPE cells promote LAP through the expression of RUBCN/Rubicon (RUN domain and cysteine-rich domain containing Beclin 1-interacting protein) and suppress autophagy through the activation of EGFR (epidermal growth factor receptor). In the morning when photoreceptor outer segments (POS) phagocytosis and LAP are highest, RUBCN expression is increased. At the same time, outer segment phagocytosis activates the EGFR resulting in MTOR (mechanistic target of rapamycin [serine/threonine kinase]) stimulation, the accumulation of SQSTM1/p62, and the phosphorylation of BECN1 (Beclin 1, autophagy related) on an inhibitory residue thereby suppressing autophagy. Silencing Rubcn, preventing EGFR activity or directly inducing autophagy in RPE cells by starvation inhibits phagocytic degradation of POS. Thus, RPE cells regulate lysosomal pathways during the critical period of POS phagocytosis to support retinal homeostasis.
Assuntos
Receptores ErbB/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Autofagia , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose , Fagossomos/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismoRESUMO
The microbiota of the aged is variously described as being more or less diverse than that of younger cohorts, but the comparison groups used and the definitions of the aged population differ between experiments. The differences are often described by null hypothesis statistical tests, which are notoriously irreproducible when dealing with large multivariate samples. We collected and examined the gut microbiota of a cross-sectional cohort of more than 1,000 very healthy Chinese individuals who spanned ages from 3 to over 100 years. The analysis of 16S rRNA gene sequencing results used a compositional data analysis paradigm coupled with measures of effect size, where ordination, differential abundance, and correlation can be explored and analyzed in a unified and reproducible framework. Our analysis showed several surprising results compared to other cohorts. First, the overall microbiota composition of the healthy aged group was similar to that of people decades younger. Second, the major differences between groups in the gut microbiota profiles were found before age 20. Third, the gut microbiota differed little between individuals from the ages of 30 to >100. Fourth, the gut microbiota of males appeared to be more variable than that of females. Taken together, the present findings suggest that the microbiota of the healthy aged in this cross-sectional study differ little from that of the healthy young in the same population, although the minor variations that do exist depend upon the comparison cohort. IMPORTANCE We report the large-scale use of compositional data analysis to establish a baseline microbiota composition in an extremely healthy cohort of the Chinese population. This baseline will serve for comparison for future cohorts with chronic or acute disease. In addition to the expected difference in the microbiota of children and adults, we found that the microbiota of the elderly in this population was similar in almost all respects to that of healthy people in the same population who are scores of years younger. We speculate that this similarity is a consequence of an active healthy lifestyle and diet, although cause and effect cannot be ascribed in this (or any other) cross-sectional design. One surprising result was that the gut microbiota of persons in their 20s was distinct from those of other age cohorts, and this result was replicated, suggesting that it is a reproducible finding and distinct from those of other populations.
RESUMO
Cones comprise only a small portion of the photoreceptors in mammalian retinas. However, cones are vital for color vision and visual perception, and their loss severely diminishes the quality of life for patients with retinal degenerative diseases. Cones function in bright light and have higher demand for energy than rods; yet, the mechanisms that support the energy requirements of cones are poorly understood. One such pathway that potentially could sustain cones under basal and stress conditions is macroautophagy. We addressed the role of macroautophagy in cones by examining how the genetic block of this pathway affects the structural integrity, survival, and function of these neurons. We found that macroautophagy was not detectable in cones under normal conditions but was readily observed following 24 h of fasting. Consistent with this, starvation induced phosphorylation of AMPK specifically in cones indicating cellular starvation. Inhibiting macroautophagy in cones by deleting the essential macroautophagy gene Atg5 led to reduced cone function following starvation suggesting that cones are sensitive to systemic changes in nutrients and activate macroautophagy to maintain their function. ATG5-deficiency rendered cones susceptible to light-induced damage and caused accumulation of damaged mitochondria in the inner segments, shortening of the outer segments, and degeneration of all cone types, revealing the importance of mitophagy in supporting cone metabolic needs. Our results demonstrate that macroautophagy supports the function and long-term survival of cones providing for their unique metabolic requirements and resistance to stress. Targeting macroautophagy has the potential to preserve cone-mediated vision during retinal degenerative diseases.