RESUMO
Single-cell genetic heterogeneity is ubiquitous in microbial populations and an important aspect of microbial biology; however, we lack a broadly applicable and accessible method to study this heterogeneity in microbial populations. Here, we show a simple, robust and generalizable method for high-throughput single-cell sequencing of target genetic loci in diverse microbes using simple droplet microfluidics devices (droplet targeted amplicon sequencing; DoTA-seq). DoTA-seq serves as a platform to perform diverse assays for single-cell genetic analysis of microbial populations. Using DoTA-seq, we demonstrate the ability to simultaneously track the prevalence and taxonomic associations of >10 antibiotic-resistance genes and plasmids within human and mouse gut microbial communities. This workflow is a powerful and accessible platform for high-throughput single-cell sequencing of diverse microbial populations.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Análise de Célula Única , Animais , Humanos , Camundongos , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
Two-dimensional valleys and magnetism are rising areas with intriguing properties and practical uses in advanced information technology. By coupling valleys to collinear magnetism, valley degeneracy is lifted in a large number of magnetic valley materials to exploit the valley degree of freedom. Beyond collinear magnetism, new coupling modes between valley and magnetism are few but highly desirable. By tight-binding calculations of a breathing Kagome lattice, we demonstrate a tunable valley structure and valley-contrasting physical properties in noncollinear antiferromagnets. Distinct from collinear magnetism, noncollinear antiferromagnetic order enables valley splittings even without spin-orbit coupling. Both the canting and azimuthal angles of magnetic moments can be used as experimentally accessible knobs to tune valley splittings. Our first-principles calculations of the Fe3C6O6-silicene-Fe3C6O6 heterostructure also exhibit tunable valley splittings in noncollinear antiferromagnetism, agreeing with our tight-binding results. Our work paves avenues for designing novel magnetic valley materials and energy-efficient valleytronic devices based on noncollinear magnetism.
RESUMO
microRNAs (miRNAs) have been intensively studied as valuable biomarkers in cardiometabolic disease. Typically, miRNAs are detected in plasma or serum but the use of samples collected in heparinized tubes is problematic for miRNA studies utilizing qPCR. Heparin and its derivatives interfere with qPCR-based analysis, leading to a substantial reduction or even complete loss of detectable miRNA levels. Given that red blood cells (RBCs) express abundant miRNAs, whose expression is altered in cardiometabolic disease, RBCs could serve as an attractive alternative in biomarker studies. Here, we aim to explore the stability of miRNAs in RBCs collected from whole blood with different anticoagulants and thereby the potential of RBCs as alternative materials for miRNA biomarker studies. miRNA profiling was performed in human RBCs via RNA sequencing, followed by qPCR validation of selected miRNAs in RBCs and plasma in both heparinized and EDTA tubes. RNA sequencing revealed abundant miRNA presence in RBCs isolated from blood collected in EDTA tubes. miR-210-3p, miR-21-5p, miR-16-5p, and miR-451a were detected at comparable levels in RBCs isolated from both heparinized and EDTA tubes, but not in plasma from heparinized tubes. Of note, miR-210 levels were consistently lower in RBCs from individuals with type 2 diabetes compared to healthy controls, regardless of anticoagulant type, supporting their potential as biomarker materials. In conclusion, RBCs offer a promising alternative for miRNA biomarker studies, overcoming heparin-related challenges.
RESUMO
Endothelial dysfunction is an early consequence of vascular inflammation and a driver of coronary atherosclerotic disease leading to myocardial infarction. The red blood cells (RBCs) mediate endothelial dysfunction in patients at cardiovascular risk, but their role in patients with acute myocardial infarction is unknown. This study aimed to investigate if RBCs from patients with ST-elevation myocardial infarction (STEMI) induced endothelial dysfunction and the role of systemic inflammation in this effect. RBCs from patients with STEMI and aged-matched healthy controls were co-incubated with rat aortic segments for 18h followed by evaluation of endothelium-dependent (EDR) and -independent relaxation (EIDR). RBCs and aortic segments were also analyzed for arginase and oxidative stress. The patients were divided into groups depending on C-reactive protein (CRP) levels at admission. RBCs from patients with STEMI and CRP levels >2 mg/L induced impairment of EDR, but not EIDR, compared to RBCs from STEMI and CRP <2 mg/L and healthy controls. Aortic expression of arginase 1 was increased following incubation with RBCs from patients with STEMI and CRP >2, and arginase inhibition prevented the RBC-induced endothelial dysfunction. RBCs from patients with STEMI and CRP >2 had increased reactive oxygen species compared to RBCs from patients with CRP <2 and healthy controls. Vascular inhibition of NADPH oxidases and increased dismutation of superoxide improved EDR. RBCs from patients with STEMI and low-grade inflammation induce endothelial dysfunction through a mechanism involving arginase 1 as well and increased RBC and vascular superoxide by NADPH oxidases.
RESUMO
The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.
Assuntos
Antibacterianos , DNA , Técnicas de Cocultura , Plasmídeos/genética , Antibacterianos/farmacologia , Transferência Genética HorizontalRESUMO
The robustness of the orbital angular momentum (OAM) of light beams propagating in a turbulent medium, e.g., atmosphere, is critical for many applications such as OAM-based free-space optical communications and remote sensing. However, the total OAM of a beam interacting with the turbulent medium inevitably changes. Here, we demonstrate a practical algorithm to control the total OAM of a beam transmitted through a time-evolving, turbulent medium by dynamically modulating the weights of two coherently superimposed OAM modes, which served as the input beam. A cross-OAM matrix is introduced, and applied for checking whether the desired total OAM in the output plane can be achieved. Furthermore, analytical relations between the weights of two input modes and the output total OAM, as well as its modulation range, are established. As a numerical example, we study the behavior of total OAM of the two-mode beam after passing through a thermal convection occurring in an aqueous medium and suggest a possible application of our strategy.
RESUMO
The mechanisms underlying endothelial dysfunction in Type 1 and Type 2 diabetes (T1DM and T2DM) are unresolved. The red blood cells (RBCs) with increased arginase activity induce endothelial dysfunction in T2DM, but the implications of RBCs and the role of arginase inhibition in T1DM are unexplored. We aimed to investigate the differences in endothelial function in patients with T1DM and T2DM, with focus on RBCs and arginase. Thirteen patients with T1DM and twenty-six patients with T2DM, matched for HbA1c and sex were included. In vivo endothelium-dependent and -independent vasodilation (EDV and EIDV) were assessed by venous occlusion plethysmography before and after administration of an arginase inhibitor. RBCs were co-incubated with rat aortic segments for 18h followed by evaluation of endothelium-dependent (EDR) and -independent relaxation (EIDR) in isolated organ chambers. In vivo EDV, but not EIDV, was significantly impaired in patients with T2DM compared with patients with T1DM. Arginase inhibition resulted in improved EDV only in T2DM. RBCs from patients with T2DM induced impaired EDR but not EIDR in isolated aortic segments, whereas RBCs from patients with T1DM did not affect EDR nor EIDR. The present study demonstrates markedly impaired EDV in patients with T2DM in comparison with T1DM. In addition, it highlights the divergent roles of RBCs and arginase in mediating endothelial dysfunction in T1DM and T2DM. While endothelial dysfunction is mediated via RBCs and arginase in T2DM, these phenomena are not prominent in T1DM thereby indicating distinct differences in underlying mechanisms.
Assuntos
Arginase , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Endotélio Vascular , Eritrócitos , Vasodilatação , Humanos , Arginase/metabolismo , Arginase/antagonistas & inibidores , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/sangue , Masculino , Eritrócitos/enzimologia , Eritrócitos/metabolismo , Feminino , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/sangue , Pessoa de Meia-Idade , Endotélio Vascular/fisiopatologia , Animais , Adulto , Idoso , Aorta/fisiopatologia , Inibidores Enzimáticos/farmacologiaRESUMO
BACKGROUND: The rapid transmission and high pathogenicity of respiratory viruses significantly impact the health of both children and adults. Extracting and detecting their nucleic acid is crucial for disease prevention and treatment strategies. However, current extraction methods are laborious and time-consuming and show significant variations in nucleic acid content and purity among different kits, affecting detection sensitivity and efficiency. Our aim is to develop a novel method that reduces extraction time, simplifies operational steps, and ensures high-quality acquisition of respiratory viral nucleic acid. METHODS: We extracted respiratory syncytial virus (RSV) nucleic acid using reagents with different components and analyzed cycle threshold (Ct) values via quantitative real-time polymerase chain reaction (qRT-PCR) to optimize and validate the novel lysis and washing solution. The performance of this method was compared against magnetic bead, spin column, and precipitation methods for extracting nucleic acid from various respiratory viruses. The clinical utility of this method was confirmed by comparing it to the standard magnetic bead method for extracting clinical specimens of influenza A virus (IAV). RESULTS: The solution, composed of equal parts glycerin and ethanol (50% each), offers an innovative washing approach that achieved comparable efficacy to conventional methods in a single abbreviated cycle. When combined with our A Plus lysis solution, our novel five-minute nucleic acid extraction (FME) method for respiratory viruses yielded superior RNA concentrations and purity compared to traditional methods. FME, when used with a universal automatic nucleic acid extractor, demonstrated similar efficiency as various conventional methods in analyzing diverse concentrations of respiratory viruses. In detecting respiratory specimens from 525 patients suspected of IAV infection, the FME method showed an equivalent detection rate to the standard magnetic bead method, with a total coincidence rate of 95.43% and a kappa statistic of 0.901 (P < 0.001). CONCLUSIONS: The FME developed in this study enables the rapid and efficient extraction of nucleic acid from respiratory samples, laying a crucial foundation for the implementation of expedited molecular diagnosis.
Assuntos
RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Humanos , RNA Viral/isolamento & purificação , RNA Viral/genética , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/genética , Infecções Respiratórias/virologia , Infecções Respiratórias/diagnóstico , Manejo de Espécimes/métodos , Fatores de Tempo , Vírus/isolamento & purificação , Vírus/genética , Influenza Humana/diagnóstico , Influenza Humana/virologia , Técnicas de Diagnóstico Molecular/métodosRESUMO
Heart failure is associated with multiple mechanisms, including sympatho-excitation, and is one of the leading causes of death worldwide. Enhanced carotid body chemoreflex function is strongly related to excessive sympathetic nerve activity and sleep-disordered breathing in heart failure. How to reduce the excitability of the carotid body is still scientifically challenging. Both clinical and experimental evidence have suggested that targeting purinergic receptors is of great potential to combat heart failure. In a recent study, Lataro et al. (Lataro et al. in Nat Commun 14:1725, 5) demonstrated that targeting purinergic P2X3 receptors in the carotid body attenuates the progression of heart failure. Using a series of molecular, biochemical, and functional assays, the authors observed that the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats with heart failure, which was generated by ligating the left anterior descending coronary artery. Moreover, P2X3 receptor expression was found to be upregulated in the petrosal ganglion chemoreceptive neurons of rats with heart failure. Of particular note, treatment with a P2X3 antagonist rescued pathological breathing disturbances, abolished episodic discharges, reinstated autonomic balance, attenuated cardiac dysfunction, and reduced the immune cell response and plasma cytokine levels in those rats.
Assuntos
Corpo Carotídeo , Insuficiência Cardíaca , Ratos , Masculino , Animais , Corpo Carotídeo/metabolismo , Receptores Purinérgicos P2X/metabolismo , Insuficiência Cardíaca/metabolismo , Neurônios/metabolismo , Sistema Nervoso Simpático , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X2/metabolismoRESUMO
Recent studies have demonstrated a novel function of red blood cells (RBCs) beyond their classical role as gas transporters, that is, RBCs undergo functional alterations in cardiovascular and metabolic disease, and RBC dysfunction is associated with hypertension and the development of cardiovascular injury in type 2 diabetes, heart failure, preeclampsia, familial hypercholesterolemia/dyslipidemia, and COVID-19. The underlying mechanisms include decreased nitric oxide bioavailability, increased arginase activity, and reactive oxygen species formation. Of interest, RBCs contain diverse and abundant micro (mi)RNAs. miRNA expression pattern in RBCs reflects the expression in the whole blood, serum, and plasma. miRNA levels in RBCs have been found to be altered in various cardiovascular and metabolic diseases, which contributes to the development of cardiovascular complications. Evidence has shown that RBC-derived miRNAs interact with the cardiovascular system via extracellular vesicles and argonaute RISC catalytic component 2 as carriers. Alteration of RBC-to-vascular communication via miRNAs may serve as potential disease mechanism for vascular complications. The present review summarizes RBCs and their released miRNAs as potential mediators of cardiovascular injury. We further focus on the possible mechanisms by which RBC-derived miRNAs regulate cardiovascular function. A better understanding of the function of RBC-derived miRNAs will increase insights into the disease mechanism and potential targets for the treatment of cardiovascular complications.
Assuntos
COVID-19 , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , MicroRNAs , Feminino , Gravidez , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , COVID-19/metabolismo , Eritrócitos/metabolismo , Coração , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismoRESUMO
Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, have recently received attention as essential mechanisms for cell-to-cell communication in cardiovascular disease. EVs can be released from different types of cells, including endothelial cells, smooth muscle cells, cardiac cells, fibroblasts, platelets, adipocytes, immune cells and stem cells. Non-coding (nc)RNAs as EV cargos have recently been investigated in the cardiovascular system. Up- or downregulated ncRNAs in EVs have been shown to play a crucial role in various cardiovascular diseases. Communication via EV-derived ncRNAs can occur between cells of the same type and between different types of cells involved in the pathophysiology of cardiovascular disease. In the present review, we highlight the important aspects of diverse cell-derived EVs and their ncRNA cargos as disease mediators and potential therapeutic targets in atherosclerosis, coronary artery disease, ischaemic heart disease and cardiac fibrosis. In addition, we summarize the potential of EV-derived ncRNAs in the treatment of cardiovascular disease. Finally, we discuss the different methods for EV isolation and characterization. A better understanding of the specific role of EVs and their ncRNA cargos in the regulation of cardiovascular (dys)function will be of importance for the development of diagnostic and therapeutic tools for cardiovascular disease.
Assuntos
Doenças Cardiovasculares , Exossomos , Vesículas Extracelulares , Humanos , Doenças Cardiovasculares/genética , Células Endoteliais , Vesículas Extracelulares/genética , Exossomos/genética , Comunicação Celular , RNA não Traduzido/genéticaRESUMO
BACKGROUND: Patients with familial hypercholesterolemia (FH) display high levels of low-density lipoprotein cholesterol (LDL-c), endothelial dysfunction, and increased risk of premature atherosclerosis. We have previously shown that red blood cells (RBCs) from patients with type 2 diabetes induce endothelial dysfunction through increased arginase 1 and reactive oxygen species (ROS). OBJECTIVE: To test the hypothesis that RBCs from patients with FH (FH-RBCs) and elevated LDL-c induce endothelial dysfunction. METHODS AND RESULTS: FH-RBCs and LDL-c >5.0 mM induced endothelial dysfunction following 18-h incubation with isolated aortic rings from healthy rats compared to FH-RBCs and LDL-c <2.5 mM or RBCs from healthy subjects (H-RBCs). Inhibition of vascular but not RBC arginase attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. Furthermore, arginase 1 but not arginase 2 was elevated in the vasculature of aortic segments after incubation with FH-RBCs and LDL-c >5.0 mM. A superoxide scavenger, present throughout the 18-h incubation, attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. ROS production was elevated in these RBCs in comparison with H-RBCs. Scavenging of vascular ROS through various antioxidants also attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. This was corroborated by an increase in the lipid peroxidation product 4-hydroxynonenal. Lipidomic analysis of RBC lysates did not reveal any significant changes across the groups. CONCLUSION: FH-RBCs induce endothelial dysfunction dependent on LDL-c levels via arginase 1 and ROS-dependent mechanisms.
Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipoproteinemia Tipo II , Animais , Ratos , LDL-Colesterol , Espécies Reativas de Oxigênio/metabolismo , Hiperlipoproteinemia Tipo II/complicações , Eritrócitos/metabolismoRESUMO
The ongoing coronavirus disease 2019 (COVID-19) pandemic has a significant global social and economic impact, and the emergence of new and more destructive mutant strains highlights the need for accurate virus detection. Here, 90 monoclonal antibodies (MAbs) that exclusively reacted with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (NP) were generated. These MAbs did not cross-react with NPs of common human coronaviruses (HCoVs, i.e., 229E, OC43, HKU1, and NL63) and Middle East Respiratory Syndrome Coronavirus. Subsequently, overlapped peptides in individual fragments (N1-N4) of NP were synthesized. N1-3 (25-GSNQNGERSGARSKQ-39), N3-1 (217-AALALLLLDRLNQL-230), and N4-8 (393-TLLPAADLDDFSKQL-407) were identified as major epitopes using enzyme-linked immunoassay (ELISA) and recognized by 47, 1, and 18 MAbs, respectively. The 24 remaining MAbs exhibited no reactivity with all synthetic peptides. Among MAb-epitope pairs, only MAbs targeting epitope N1-3 displayed no cross-reaction with NPs of SARS-CoV-1 and other SARS-related CoVs. All Omicron variants contained a three-amino acid deletion (31ERS33) in the N1-3 region. Thus, MAbs targeting N1-3 failed to recognize these variants. Furthermore, a double-antibody sandwich ELISA for antigen detection was established using the optimal MAbs. Overall, a series of MAbs targeting SARS-CoV-2 NP was prepared, characterized with epitope mapping, and applied for the detection of SARS-CoV-2 antigens, and some novel B-cell epitopes of the viral NP were identified.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais , Ensaio de Imunoadsorção Enzimática , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo/química , Peptídeos , Epitopos , Anticorpos Antivirais , Glicoproteína da Espícula de CoronavírusRESUMO
Cardiac fibrosis is a pathological process underlying myocardial remodeling and is characterized by excessive deposition of the myocardial extracellular matrix. Long noncoding RNAs (lncRNAs) have emerged as critical regulators of various biological processes. In this study, we investigated the role of a novel lncRNA, Gm41724, in cardiac fibrosis induced by pressure overload. High-throughput whole transcriptome sequencing analysis was performed to detect differentially expressed lncRNAs in cardiac fibroblasts (CFs) with or without TGF-ß1 treatment. Differential expression analysis and gene set enrichment analysis identified Gm41724 as a potential molecule targeting fibrosis. Gm41724 positively regulated the activation of CFs induced by TGF-ß1 and pressure overload. Knocking down Gm41724 could inhibit the differentiation of CFs into myofibroblasts and alleviate cardiac fibrosis induced by pressure overload. Mechanistically, comprehensive identification of RNA-binding proteins by mass spectrometry (CHIRP-MS) and RNA immunoprecipitation (RIP) assay combined with other methods of molecular biological revealed the important role of Gm41724 binding to lamina-associated polypeptide 2α (lap2α) for the activation of CFs. Further mechanistic studies indicated that the regulator of G protein signaling 4 (Rgs4), as the downstream effector of Gm41724/lap2α, regulated CFs activation. Our results implicated the involvement of Gm41724 in cardiac fibrosis induced by pressure overload and it is expected to be a promising target for anti-fibrotic therapy.
Assuntos
Cardiomiopatias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cardiomiopatias/metabolismo , Miocárdio/patologia , Fibrose , Fibroblastos/metabolismoRESUMO
BACKGROUND Despite an increasing number of published articles on intravoxel incoherent motion (IVIM) in the past decade, almost all have focused on the technique and clinical applications of IVIM, with little attention to the collective knowledge and scientific analysis of this field. The aim of the present study was to construct a knowledge framework and to explore hotspots and emerging trends concerning use of IVIM in humans. MATERIAL AND METHODS The articles concerning IVIM MRI published from 1988 to 2021 were retrieved from the Science Citation Index Expended of the Web of Science Core Collection on 17, August 2021. The downloaded data were imported into Excel 2016 and CiteSpace V for scientometric analysis. RESULTS A total of 921 articles were included in this study and most of them were published since 2012. China (n=392) was the most productive country and the Philips Healthcare (n=46) was the most productive institution. Christian Federau had the largest number of publications (n=18). An article by Andreou A et al (2013) was the most important reference with the most co-citations (n=100) and centrality (0.06). The 5 hotspots in IVIM were perfusion, diffusion-weighted imaging, intravoxel incoherent motion, apparent diffusion coefficient, and magnetic resonance imaging. The 2 frontier topics were "brain perfusion" and "accuracy". According to the clustering of co-citation analysis, "liver", "diffusion weighting", "pancreas", and "brain" were the main research directions. CONCLUSIONS Scientometric analysis of IVIM literature with CiteSpace software can provide researchers with valuable information about knowledge framework, hotspots, and emerging trends concerning IVIM in humans.
Assuntos
Abdome , Imagem de Difusão por Ressonância Magnética , Humanos , Movimento (Física) , Imagem de Difusão por Ressonância Magnética/métodos , Pâncreas , PerfusãoRESUMO
To study the synergistic catalysis of an ex situ catalyst and in situ clay in the aquathermolysis of heavy oil, in this paper, a series of bentonite-supported catechol-metal complexes were prepared, and the catalytic viscosity reduction performance in the aquathermolysis of heavy oil was investigated. Under the optimized conditions, the viscosity can be reduced by 73%, and the pour point can be lowered by 15.0 °C at most, showing the synergistic catalysis of the ex situ catalyst and in situ clay in this aquathermolytic reaction. Thermogravimetry, physical adsorption-desorption, and scanning electron microscopy were conducted to characterize the thermal stability and microstructure of the ex situ catalyst. The components of the heavy oil before and after the reaction were fully characterized. Six model compounds were used to simulate the aquathermolysis reaction process. In order to study the mechanism of viscosity reduction after the catalytic aquathermolysis reaction, the compounds were analyzed by GC-MS. It is believed that these results will be beneficial in the future for related research in this field.
RESUMO
BACKGROUND: The B cell receptor (BCR) repertoire is highly diverse among individuals. Poor similarity of the spectrum among inbred baseline mice may limit the ability to discriminate true signals from those involving specific experimental factors. The repertoire similarity of the baseline status lacks intensive measurements. RESULTS: We measured the repertoire similarity of IgH in blood and spleen samples from untreated BALB/c and C57BL/6J mice to investigate the baseline status of the two inbred strains. The antibody pool was stratified by the isotype of IgA, IgG and IgM. Between individuals, the results showed better convergence of CDR3 and clonal lineage profiles in IgM than in IgA and IgG, and better robustness of somatic mutation networks in IgM than in IgA and IgG. It also showed that the CDR3 clonotypes and clonal lineages shared better in the spleen samples than in the blood samples. The animal batch differences were detected in CDR3 evenness, mutated clonotype proportions, and maximal network degrees. A cut-off of 95% identity in the CDR3 nucleotide sequences was suitable for clonal lineage establishment. CONCLUSIONS: Our findings reveal a natural landscape of BCR repertoire similarities between baseline mice and provide a solid reference for designing studies of mouse BCR repertoires.
Assuntos
Regiões Determinantes de Complementaridade , Receptores de Antígenos de Linfócitos B , Animais , Regiões Determinantes de Complementaridade/genética , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos B/genéticaRESUMO
Red blood cells (RBCs) are suggested to play a role in cardiovascular regulation by exporting nitric oxide (NO) bioactivity and ATP under hypoxia. It remains unknown whether such beneficial effects of RBCs are protective in patients with acute myocardial infarction. We investigated whether RBCs from patients with ST-elevation myocardial infarction (STEMI) protect against myocardial ischemia-reperfusion injury and whether such effect involves NO and purinergic signaling in the RBCs. RBCs from patients with STEMI undergoing primary coronary intervention and healthy controls were administered to isolated rat hearts subjected to global ischemia and reperfusion. Compared to RBCs from healthy controls, RBCs from STEMI patients reduced myocardial infarct size (30 ± 12% RBC healthy vs. 11 ± 5% RBC STEMI patients, P < 0.001), improved recovery of left-ventricular developed pressure and dP/dt and reduced left-ventricular end-diastolic pressure in hearts subjected to ischemia-reperfusion. Inhibition of RBC NO synthase with L-NAME or soluble guanylyl cyclase (sGC) with ODQ, and inhibition of cardiac protein kinase G (PKG) abolished the cardioprotective effect. Furthermore, the non-selective purinergic P2 receptor antagonist PPADS but not the P1 receptor antagonist 8PT attenuated the cardioprotection induced by RBCs from STEMI patients. The P2Y13 receptor was expressed in RBCs and the cardioprotection was abolished by the P2Y13 receptor antagonist MRS2211. By contrast, perfusion with PPADS, L-NAME, or ODQ prior to RBCs administration failed to block the cardioprotection induced by RBCs from STEMI patients. Administration of RBCs from healthy subjects following pre-incubation with an ATP analog reduced infarct size from 20 ± 6 to 7 ± 2% (P < 0.001), and this effect was abolished by ODQ and MRS2211. This study demonstrates a novel function of RBCs in STEMI patients providing protection against myocardial ischemia-reperfusion injury through the P2Y13 receptor and the NO-sGC-PKG pathway.
Assuntos
Eritrócitos , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Infarto do Miocárdio com Supradesnível do Segmento ST , Trifosfato de Adenosina , Animais , Proteínas Quinases Dependentes de GMP Cíclico , Eritrócitos/metabolismo , Humanos , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/terapia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase , Antagonistas do Receptor Purinérgico P2 , Ratos , Receptores Purinérgicos P2/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Guanilil Ciclase SolúvelRESUMO
INTRODUCTION: Sunitinib, a multi-targeted tyrosine kinase receptor inhibitor used to treat renal-cell carcinoma and gastrointestinal stromal tumor, was recently shown to have a beneficial effect on metabolism in type 2 diabetes (T2D). Endothelial dysfunction is a key factor behind macro- and microvascular complications in T2D. The effect of sunitinib on endothelial function in T2D remains, however, unclear. We therefore tested the hypothesis that sunitinib ameliorates endothelial dysfunction in T2D. METHODS: Sunitinib (2 mg/kg/day, by gavage) was administered to T2D Goto-Kakizaki (GK) rats for 6 weeks, while water was given to GK and Wistar rats as controls. Hemodynamic, inflammatory, and metabolic parameters as well as endothelial function were measured. RESULTS: Systolic, mean arterial blood pressures, plasma tumor necrosis factor α levels, kidney weight to body weight (BW) ratio, and glucose levels were higher, while BW was lower in GK rats than in Wistar rats. Six-week treatment with sunitinib in GK rats did not affect these parameters but suppressed the increase in glucose levels. Endothelium-dependent relaxations were reduced in both aortas and mesenteric arteries isolated from GK as compared to Wistar rats, which was markedly reversed in both types of arteries from GK rats treated with sunitinib. CONCLUSIONS: This study demonstrates that sunitinib has a glucose-lowering effect and ameliorates endothelial dysfunction in both conduit and resistance arteries of GK rats.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular , Ratos , Ratos Wistar , Sunitinibe/metabolismo , Sunitinibe/farmacologia , Sunitinibe/uso terapêuticoRESUMO
BACKGROUND: Mortality in sepsis remains high. Studies on small cohorts have shown that red cell distribution width (RDW) is associated with mortality. The aim of this study was to validate these findings in a large multicenter cohort. METHODS: We conducted this retrospective analysis of the multicenter eICU Collaborative Research Database in 16,423 septic patients. We split the cohort in patients with low (≤15%; n = 7,129) and high (>15%; n = 9,294) RDW. Univariable and multivariable multilevel logistic regressions were used to fit regression models for the binary primary outcome of hospital mortality and the secondary outcome intensive care unit (ICU) mortality with hospital unit as random effect. Optimal cutoffs were calculated using the Youden index. RESULTS: Patients with high RDW were more often older than 65 years (57% vs. 50%; p < 0.001) and had higher Acute Physiology and Chronic Health Evaluation (APACHE) IV scores (69 vs. 60 pts.; p < 0.001). Both hospital (adjusted odds ratios [aOR] 1.18; 95% CI: 1.16-1.20; p < 0.001) and ICU mortality (aOR 1.16; 95% CI: 1.14-1.18; p < 0.001) were associated with RDW as a continuous variable. Patients with high RDW had a higher hospital mortality (20 vs. 9%; aOR 2.63; 95% CI: 2.38-2.90; p < 0.001). This finding persisted after multivariable adjustment (aOR 2.14; 95% CI: 1.93-2.37; p < 0.001) in a multilevel logistic regression analysis. The optimal RDW cutoff for the prediction of hospital mortality was 16%. CONCLUSION: We found an association of RDW with mortality in septic patients and propose an optimal cutoff value for risk stratification. In a combined model with lactate, RDW shows equivalent diagnostic performance to Sequential Organ Failure Assessment (SOFA) score and APACHE IV score.