Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202412901, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141415

RESUMO

Electrochemical formic acid oxidation reaction (FAOR) is a pivotal model for understanding organic fuel oxidation and advancing sustainable energy technologies. Here, we present mechanistic insights into a novel molecular-like iridium catalyst (Ir-N4-C) for FAOR. Our studies reveal that isolated sites facilitate a preferential dehydrogenation pathway, circumventing catalyst poisoning and exhibiting high inherent activity. In-situ spectroscopic analyses elucidate that weakly adsorbed intermediates mediate the FAOR and are dynamically regulated by potential-dependent redox transitions. Theoretical and experimental investigations demonstrate a parallel mechanism involving two key intermediates with distinct pH and potential sensitivities. The rate-determining step is identified as the adsorption of formate via coupled or sequential proton-electron transfer, which aligns well with the observed kinetic properties, pH dependence, and hydrogen/deuterium isotope effects in experiments. These findings provide valuable insights into the reaction mechanism of FAOR, advancing our understanding at the molecular level and potentially guiding the design of efficient catalysts for fuel cells and electrolyzers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA