Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Sci Technol ; 89(6): 1570-1582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557719

RESUMO

Despite the high adsorption capacity of polyaluminum chloride and anionic polyacrylamide water treatment residuals (PAC-APAM WTRs) for Pb2+, Cd2+, Cu2+, and Zn2+, their influence on the adsorption behavior of heavy metals in traditional bioretention soil media remains unclear. This study investigated the impact of PAC-APAM WTRs at a 20% weight ratio on the adsorption removal of Pb2+, Cd2+, Cu2+, and Zn2+ in three types of soils. The results demonstrated improved heavy metal adsorption in the presence of PAC-APAM WTRs, with enhanced removal observed at higher pH levels and temperatures. The addition of PAC-APAM WTRs augmented the maximum adsorption capacity for Pb2+ (from 0.98 to 3.98%), Cd2+ (from 0.52 to 10.99%), Cu2+ (from 3.69 to 36.79%), and Zn2+ (from 2.63 to 13.46%). The Langmuir model better described the data in soils with and without PAC-APAM WTRs. The pseudo-second-order model more accurately described the adsorption process, revealing an irreversible chemical process, although qe demonstrated improvement with the addition of PAC-APAM WTRs. This study affirms the potential of PAC-APAM WTRs as an amendment for mitigating heavy metal pollution in stormwater bioretention systems. Further exploration of the engineering application of PAC-APAM WTRs, particularly in field conditions for the removal of dissolved heavy metals, is recommended.


Assuntos
Resinas Acrílicas , Hidróxido de Alumínio , Metais Pesados , Purificação da Água , Cádmio , Solo , Adsorção , Chumbo , Metais Pesados/análise , Purificação da Água/métodos
2.
Adv Sci (Weinh) ; 11(18): e2309984, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430531

RESUMO

The induction of cuproptosis, a recently identified form of copper-dependent immunogenic cell death, is a promising approach for antitumor therapy. However, sufficient accumulation of intracellular copper ions (Cu2+) in tumor cells is essential for inducing cuproptosis. Herein, an intelligent cuproptosis-inducing nanosystem is constructed by encapsulating copper oxide (CuO) nanoparticles with the copper ionophore elesclomol (ES). After uptake by tumor cells, ES@CuO is degraded to release Cu2+ and ES to synergistically trigger cuproptosis, thereby significantly inhibiting the tumor growth of murine B16 melanoma cells. Moreover, ES@CuO further promoted cuproptosis-mediated immune responses and reprogrammed the immunosuppressive tumor microenvironment by increasing the number of tumor-infiltrating lymphocytes and secreted inflammatory cytokines. Additionally, combining ES@CuO with programmed cell death-1 (PD-1) immunotherapy substantially increased the antitumor efficacy in murine melanoma. Overall, the findings of this study can lead to the use of a novel strategy for cuproptosis-mediated antitumor therapy, which may enhance the efficacy of immune checkpoint inhibitor therapy.


Assuntos
Cobre , Imunoterapia , Melanoma Experimental , Animais , Camundongos , Imunoterapia/métodos , Cobre/química , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Modelos Animais de Doenças , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Clorofilídeos , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA