Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 101(3): 1133-1142, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27683210

RESUMO

Soluble expression of recombinant therapeutic proteins in Escherichia coli (E. coli) has been a challenging task in biopharmaceutical development. In this study, a novel self-cleavable tag Zbasic-intein has been constructed for the soluble expression and purification of a recombinant cytokine, human interleukin-15 (IL-15). We screened several solubilizing tags fused with the self-cleavable Mycobacterium tuberculosis recA mini-intein ∆I-CM and demonstrated that Zbasic tag can significantly improve the solubility of the product with correspondent to the intein activity. The fusion protein "Zbasic-∆I-CM-IL-15" was expressed with high solubility and easily enriched by the cost-effective cation-exchange chromatography. The self-cleavage of the fusion tag Zbasic-∆I-CM was then induced by a pH shift, with an activation energy of 7.48 kcal/mol. The mature IL-15 with natural N-terminus was released and further purified by hydrophobic interaction and anion-exchange chromatography. High-resolution reverse-phase high-performance liquid chromatography and mass spectrometry analysis confirmed that the product was of high purity and correct mass. With a CTLL-2 cell proliferation-based assay, the EC50 was evaluated to be of about 0.126 ng/mL, similar to the product in clinical trials. By avoiding the time-consuming denaturing-refolding steps in previously reported processes, the current method is efficient and cost-effective. The novel tag Zbasic-∆I-CM can be potentially applied to large-scale manufacturing of recombinant human cytokines as well as other mammalian-sourced proteins in E. coli.


Assuntos
Escherichia coli/genética , Interleucina-15/química , Interleucina-15/genética , Biofarmácia/métodos , Cromatografia Líquida , Escherichia coli/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Inteínas , Interleucina-15/isolamento & purificação , Espectrometria de Massas , Mycobacterium tuberculosis/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/economia , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade
2.
Appl Microbiol Biotechnol ; 101(13): 5267-5278, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28391504

RESUMO

It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.


Assuntos
Escherichia coli/genética , Corpos de Inclusão , Interleucina-15/biossíntese , Interleucina-15/química , Polietilenoglicóis/química , Biofarmácia/métodos , Precipitação Química , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Escherichia coli/química , Escherichia coli/metabolismo , Humanos , Corpos de Inclusão/química , Interleucina-15/isolamento & purificação , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA