Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(3): 305-310, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36536140

RESUMO

Magnetic proximity interactions between atomically thin semiconductors and two-dimensional magnets provide a means to manipulate spin and valley degrees of freedom in non-magnetic monolayers, without using applied magnetic fields1-3. In such van der Waals heterostructures, magnetic proximity interactions originate in the nanometre-scale coupling between spin-dependent electronic wavefunctions in the two materials, and typically their overall effect is regarded as an effective magnetic field acting on the semiconductor monolayer4-8. Here we demonstrate that magnetic proximity interactions in van der Waals heterostructures can in fact be markedly asymmetric. Valley-resolved reflection spectroscopy of MoSe2/CrBr3 van der Waals structures reveals strikingly different energy shifts in the K and K' valleys of the MoSe2 due to ferromagnetism in the CrBr3 layer. Density functional calculations indicate that valley-asymmetric magnetic proximity interactions depend sensitively on the spin-dependent hybridization of overlapping bands and as such are likely a general feature of hybrid van der Waals structures. These studies suggest routes to control specific spin and valley states in monolayer semiconductors9,10.

2.
Opt Express ; 32(5): 6800-6813, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439377

RESUMO

Digital mask projection lithography (DMPL) technology is gaining significant attention due to its characteristics of free-mask, flexibility, and low cost. However, when dealing with target layouts featuring sizes smaller than the wavelength scale, accurately producing resist patterns that closely match the target layout using conventional methods to design the modulation coefficients of digital masks produced by spatial light modulators (SLM) becomes challenging. Here, we present digital inversion lithography technology (DILT), which offers what we believe to be a novel approach to reverse engineer the modulation coefficients of digital masks. In the case of binary amplitude modulation, DILT achieves a remarkable reduction in pattern errors (PE), reaching the original 0.26. At the same time, in the case of the gray amplitude modulation, the PE can be reduced to the original 0.05, which greatly improves the high-fidelity transfer of the target layout. This significant improvement enhances the accuracy of target design transfer. By leveraging the capabilities of DILT, DMPL can now attain higher precision and reliability, paving the way for more advanced applications in the field of micro-nano device manufacturing.

3.
Nano Lett ; 23(9): 3754-3761, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37094221

RESUMO

Defect engineering of van der Waals semiconductors has been demonstrated as an effective approach to manipulate the structural and functional characteristics toward dynamic device controls, yet correlations between physical properties with defect evolution remain underexplored. Using proton irradiation, we observe an enhanced exciton-to-trion conversion of the atomically thin WS2. The altered excitonic states are closely correlated with nanopore induced atomic displacement, W nanoclusters, and zigzag edge terminations, verified by scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. Density functional theory calculation suggests that nanopores facilitate formation of in-gap states that act as sinks for free electrons to couple with excitons. The ion energy loss simulation predicts a dominating electron ionization effect upon proton irradiation, providing further evidence on band perturbations and nanopore formation without destroying the overall crystallinity. This study provides a route in tuning the excitonic properties of van der Waals semiconductors using an irradiation-based defect engineering approach.

4.
Opt Express ; 30(25): 45312-45326, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522939

RESUMO

Neural network-based inverse lithography technology (NNILT) has been used to improve the computational efficiency of large-scale mask optimization for advanced photolithography. NNILT is now mostly based on labels, and its performance is affected by the quality of labels. It is difficult for NNILT to achieve high performance and extrapolation ability for mask optimization without using labels. Here, we propose a label-free NNILT (LF-NNILT), which is implemented completely without labels and greatly improves the printability of the target layouts and the manufacturability of the synthesized masks compared to the traditional ILT. More importantly, the optimization speed of LF-NNILT is two orders of magnitude faster than the traditional ILT. Furthermore, LF-NNILT is simpler to implement and can achieve better solvers to support the development of advanced lithography.


Assuntos
Redes Neurais de Computação , Impressão , Tecnologia
5.
Phys Rev Lett ; 124(16): 166403, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383898

RESUMO

Using the density functional theory combined with dynamical mean-field theory, we have performed systematic study of the electronic structure and its band topology properties of Ce_{3}Pt_{3}Bi_{4} and Ce_{3}Pd_{3}Bi_{4}. At high temperatures (∼290 K), the electronic structures of both compounds resemble the open-core 4f density functional calculation results. For Ce_{3}Pt_{3}Bi_{4}, clear hybridization gap can be observed below 72 K, and its coherent momentum-resolved spectral function below 18 K exhibits an topologically trivial indirect gap of ∼6 meV and resembles density functional band structure with itinerant 4f state. For Ce_{3}Pd_{3}Bi_{4}, no clear hybridization gap can be observed down to 4 K, and its momentum-resolved spectral function resembles electron-doped open-core 4f density functional calculations. The band nodal points of Ce_{3}Pd_{3}Bi_{4} at 4 K are protected by the gliding-mirror symmetry and form ringlike structure. Therefore, the Ce_{3}Pt_{3}Bi_{4} compound is topologically trivial Kondo insulator while the Ce_{3}Pd_{3}Bi_{4} compound is topological nodal-line semimetal.

6.
Phys Rev Lett ; 125(23): 237003, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337176

RESUMO

Spin-triplet superconductors are of extensive current interest because they can host topological state and Majorana fermions important for quantum computation. The uranium-based heavy-fermion superconductor UTe_{2} has been argued as a spin-triplet superconductor similar to UGe_{2}, URhGe, and UCoGe, where the superconducting phase is near (or coexists with) a ferromagnetic (FM) instability and spin-triplet electron pairing is driven by FM spin fluctuations. Here we use neutron scattering to show that, although UTe_{2} exhibits no static magnetic order down to 0.3 K, its magnetism in the [0,K,L] plane is dominated by incommensurate spin fluctuations near an antiferromagnetic ordering wave vector and extends to at least 2.6 meV. We are able to understand the dominant incommensurate spin fluctuations of UTe_{2} in terms of its electronic structure calculated using a combined density-functional and dynamic mean-field theory.

9.
Phys Rev Lett ; 122(20): 207401, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172773

RESUMO

In recent years, ultrafast pump-probe spectroscopy has provided insightful information about the nonequilibrium dynamics of excitations in materials. In a typical experiment of time-resolved x-ray absorption spectroscopy, the systems are excited by a femtosecond laser pulse (pump pulse) followed by an x-ray probe pulse after a time delay to measure the absorption spectra of the photoexcited systems. We present a theory for nonequilibrium x-ray absorption spectroscopy in one-dimensional strongly correlated systems. The core hole created by the x ray is modeled as an additional effective potential of the core hole site, which changes the spectrum qualitatively. In equilibrium, the spectrum reveals the charge gap at half-filling and the metal-insulator transition in the presence of the core hole effect. Furthermore, a pump-probe scheme is introduced to drive the system out of equilibrium before the x-ray probe. The effects of the pump pulse with varying frequencies, shapes, and fluences are discussed for the dynamics of strongly correlated systems in and out of resonance. The spectrum indicates that the driven insulating state has a metallic droplet around the core hole. The rich structures of the nonequilibrium x-ray absorption spectrum give more insight into the dynamics of electronic structures.

10.
Phys Rev Lett ; 122(8): 087001, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932570

RESUMO

We study the Kondo physics of a quantum magnetic impurity in two-dimensional topological superconductors (TSCs), either intrinsic or induced on the surface of a bulk topological insulator, using a numerical renormalization group technique. We show that, despite sharing the p+ip pairing symmetry, intrinsic and extrinsic TSCs host different physical processes that produce distinct Kondo signatures. Extrinsic TSCs harbor an unusual screening mechanism involving both electron and orbital degrees of freedom that produces rich and prominent Kondo phenomena, especially an intriguing pseudospin Kondo singlet state in the superconducting gap and a spatially anisotropic spin correlation. In sharp contrast, intrinsic TSCs support a robust impurity spin doublet ground state and an isotropic spin correlation. These findings advance fundamental knowledge of novel Kondo phenomena in TSCs and suggest experimental avenues for their detection and distinction.

11.
Nat Mater ; 21(4): 384-385, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361948
12.
Phys Rev Lett ; 121(22): 227003, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547656

RESUMO

Motivated by the recent low-temperature experiments on bulk FeSe, we study the electron correlation effects in a multiorbital model for this compound in the nematic phase using the U(1) slave-spin theory. We find that a finite nematic order helps to stabilize an orbital selective Mott phase. Moreover, we propose that when the d- and s-wave bond nematic orders are combined with the ferro-orbital order, there exists a surprisingly large orbital selectivity between the xz and yz orbitals even though the associated band splitting is relatively small. Our results explain the seemingly unusual observation of strong orbital selectivity in the nematic phase of FeSe, uncover new clues on the nature of the nematic order, and set the stage to elucidate the interplay between superconductivity and nematicity in iron-based superconductors.

13.
Phys Rev Lett ; 120(1): 016403, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350954

RESUMO

We show that the topological index of a wave function, computed in the space of twisted boundary phases, is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation affects the boundary condition of the resulting state, the invariant index may acquire a different physical interpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, Z_{2} topological insulators, and spin-1 Affleck-Kennedy-Lieb-Tasaki and Heisenberg chains, as well as its relation with the notion of bulk entanglement. As a possible application, we propose a partial quantum tomography scheme from which the topological index of a generic multicomponent wave function can be extracted by measuring only a small subset of wave function components, equivalent to the measurement of a bulk entanglement topological index.

14.
Proc Natl Acad Sci U S A ; 112(3): 673-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561536

RESUMO

Conventional, thermally driven continuous phase transitions are described by universal critical behavior that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-driven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behavior remain open issues. Here we report measurements of heat capacity and de Haas-van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (Bc0 ≈ 50 T) in the heavy-fermion metal CeRhIn5. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B0* ≈ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn5 suggest that the Fermi-surface change at B0* is associated with a localized-to-itinerant transition of the Ce-4f electrons in CeRhIn5. Taken in conjunction with pressure experiments, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn5, a significant step toward the derivation of a universal phase diagram for QCPs.

15.
Faraday Discuss ; 206: 159-181, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-28956588

RESUMO

Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinating anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. Thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.

16.
Cancer Cell Int ; 16(1): 65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570490

RESUMO

BACKGROUND: Pancreatic cancer is currently one of the leading causes of cancer deaths without any effective therapies. Mir-145 has been found to be tumor-suppressive in various types of cancers. The aim of this study is to investigate the role of miR-145 in pancreatic cancer cells and explore its underlying mechanism. METHODS: Quantitative real time PCR was used to determine the expression level of miR-145 and angiopoietin-2 (Ang-2) mNRA, and the expression level of Ang-2 protein was measured by western blotting. The anti-cancer activities of miR-145 were tested both in in vitro by using cell invasion and colony formation assay and in vivo by using xenograft assay. The direct action of miR-145 on Ang-2 was predicted by TargetScan and confirmed by luciferase report assay. The vascularization of xenografts were performed by immunohistochemical analysis. RESULTS: The expression level of miR-145 was significantly lower and the expression levels of Ang-2 mRNA and protein was significantly higher in the more aggressive pancreatic cancer cells (MiaPaCa-2 and Panc-1) when compared to that in BxPC3 cells. Overexpression of miR-145 in the BxPC3, MiaPaCa-2 and Panc-1 cells suppressed the cell invasion and colony formation ability, and the expression level of Ang-2 protein in MiaPaCa-2 and Panc-1 cells was also suppressed after pre-miR-145 transfection. Intratumoral delivery of miR-145 inhibited the growth of pancreatic cancer xenografts and angiogenesis in vivo, and also suppressed the expression level of angiopoietin-2 protein. Luciferase report assay showed that Ang-2 is a direct target of miR-145, and down-regulation of angiopoietin-2 by treatment with Ang-2 siRNA in the BxPC3, MiaPaCa-2 and Panc-1 cells suppressed cell invasion and colony formation ability. The reverse transcription PCR results also showed that Tie1 and Tie2 were expressed in BxPC3, MiaPaCa-2 and Panc-1 cells. CONCLUSION: MiR-145 functions as a tumor suppressor in pancreatic cancer cells by targeting Ang-2 for translation repression and thus suppresses pancreatic cancer cell invasion and growth, which suggests that restoring of miR-145 may be a potential therapeutic target for pancreatic cancer.

17.
Phys Rev Lett ; 116(23): 237003, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341252

RESUMO

The iron-based superconductors AFe_{2}As_{2} with A=K, Rb, Cs exhibit large Sommerfeld coefficients approaching those of heavy-fermion systems. We have investigated the magnetostriction and thermal expansion of this series to shed light on this unusual behavior. Quantum oscillations of the magnetostriction allow identifying the band-specific quasiparticle masses which by far exceed the band-structure derived masses. The divergence of the Grüneisen ratio derived from thermal expansion indicates that with increasing volume along the series a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to weaken the superconducting state.

18.
Environ Monit Assess ; 187(7): 394, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26038320

RESUMO

Malathion is an organophosphorous insecticide for controlling insects on fruits and vegetables, miscellaneous household insects, and animal parasites. It is important to develop highly efficient and selective pre-treatment method for analyzing malathion residues in environment and samples from agricultural products based on the molecularly imprinted polymers (MIPs). In this study, we developed a tailor-made MIP method with highly specific recognization to the template. The MIPs were prepared using malathion as a template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, azodiisobutyronitrile (AIBN) as an initiator, and the acetonitrile-chloroform (1:1, v/v) as a porogen. The molecular recognization mechanism of malathion and MAA was evaluated by molecular simulation, ultraviolet spectrometry (UV), and (1)H-nuclear magnetic resonance ((1)H-NMR). MAA interacted specifically with malathion by hydrogen bond with a ratio of 2:1. The MIPs exhibit a high affinity, recognition specificity, and efficient adsorption performance for malathion. The Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), surface area and porosimeter analyzer, thermogravimetric/differential thermal analyzer (TG/DTA) were used to characterize the properties of MIP. The malathion residues in soil, tap water, and cabbage were cleaned up by MIP-SPE, detected quantitatively using GC-FPD, and confirmed by GC-MS/MS. The limits of tap water, soil, and cabbage were confined to 0.001 mg L(-1), 0.004 and 0.004 mg kg(-1), respectively. The spiked recoveries of malathion were 96.06-111.49% (with RSD being 5.7-9.2%), 98.13-103.83% (RSD, 3.5-8.7%), and 84.94-93.69% (RSD, 4.7-5.8%) for tap water, soil, and cabbage samples, respectively. Thus, the method developed here can be used effectively in assessing malathion residues in multiple environmental samples. The aim of the study was to provide an efficient, selective, and accurate method for analyzing malathion at trace levels in multiple media.


Assuntos
Inseticidas/análise , Malation/análise , Polímeros/química , Acetonitrilas/química , Adsorção , Brassica/química , Clorofórmio/química , Monitoramento Ambiental , Inseticidas/química , Malation/química , Metacrilatos/química , Microscopia Eletrônica de Varredura , Impressão Molecular , Nitrilas/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Poluentes do Solo/análise , Poluentes do Solo/química , Extração em Fase Sólida , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
19.
Phys Rev Lett ; 113(25): 257201, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25554904

RESUMO

We investigate the far-from-equilibrium nature of magnetic anisotropy and exchange interactions between molecular magnets embedded in a tunnel junction. By mapping to an effective spin model, these magnetic interactions can be divided into three types: isotropic Heisenberg, anisotropic Ising, and anisotropic Dzyaloshinski-Moriya contributions, which are attributed to the background nonequilibrium electronic structures. We further demonstrate that both the magnetic self- and exchange interactions can be controlled either electrically by gating and tuning the voltage bias, or thermally by adjusting the temperature bias. We show that the Heisenberg and Ising interactions scale linearly, while the Dzyaloshinski-Moriya interaction scales quadratically, with the molecule-lead coupling strength. The interactions scale linearly with the effective spin polarizations of the leads and the molecular coherence. Our results pave a way for smart control of magnetic exchange interactions at atomic and molecular levels.

20.
Phys Rev Lett ; 113(4): 047204, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105651

RESUMO

Using polarized neutron reflectometry, we observe an induced magnetization of 75 ± 25 kA/m at 10 K in a La(0.7)Sr(0.3)MnO(3) (LSMO)/BiFeO(3) superlattice extending from the interface through several atomic layers of the BiFeO(3) (BFO). The induced magnetization in BFO is explained by density functional theory, where the size of band gap of BFO plays an important role. Considering a classical exchange field between the LSMO and BFO layers, we further show that magnetization is expected to extend throughout the BFO, which provides a theoretical explanation for the results of the neutron scattering experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA