RESUMO
SIGNIFICANCE: An effective contrast agent for concurrent multimodal photoacoustic (PA) and ultrasound (US) imaging must have both high optical absorption and high echogenicity. Integrating a highly absorbing dye into the lipid shell of gas core nanobubbles (NBs) adds PA contrast to existing US contrast agents but may impact agent ultrasonic response. AIM: We report on the development and ultrasonic characterization of lipid-shell stabilized C3F8 NBs with integrated Sudan Black (SB) B dye in the shell as dual-modal PA-US contrast agents. APPROACH: Perfluoropropane NBs stabilized with a lipid shell including increasing concentrations of SB B dye were formulated by amalgamation (SBNBs). Physical properties of SBNBs were characterized using resonant mass measurement, transmission electron microscopy and pendant drop tensiometry. Concentrated bubble solutions were imaged for 8 min to assess signal decay. Diluted bubble solutions were stimulated by a focused transducer to determine the response of individual NBs to long cycle (30 cycle) US. For assessment of simultaneous multimodal contrast, bulk populations of SBNBs were imaged using a PA and US imaging platform. RESULTS: We produced high agent yield (â¼1011) with a mean diameter of â¼200 to 300 nm depending on SB loading. A 40% decrease in bubble yield was measured for solutions with 0.3 and 0.4 mg / ml SB. The addition of SB to the shell did not substantially affect NB size despite an increase in surface tension by up to 8 mN / m. The bubble decay rate increased after prolonged exposure (8 min) by dyed bubbles in comparison to their undyed counterparts (2.5-fold). SB in bubble shells increased gas exchange across the shell for long cycle US. PA imaging of these agents showed an increase in power (up to 10 dB) with increasing dye. CONCLUSIONS: We added PA contrast function to NBs. The addition of SB increased gas exchange across the NB shell. This has important implications in their use as multimodal agents.
Assuntos
Corantes , Meios de Contraste , Acústica , Lipídeos , Microbolhas , Sudão , UltrassonografiaRESUMO
The amount of gas in ultrasound contrast agents is related to their acoustic activity. Because of this relationship, gas volume has been used as a key variable in normalizing the in vitro and in vivo acoustic behavior of lipid shell-stabilized bubbles with different sizes and shell components. Despite its importance, bubble gas volume has typically only been theoretically calculated based on bubble size and concentration that is typically measured using the Coulter counter for microbubbles and nanoparticle tracking analysis (NTA) for nanoscale bubbles. However, while these methods have been validated for the analysis of liquid or solid particles, their application in bubble analysis has not been rigorously studied. We have previously shown that resonant mass measurement (RMM) may be a better-suited technique for sub-micron bubble analysis, as it can measure both buoyant and non-buoyant particle size and concentration. Here, we provide validation of RMM bubble analysis by using headspace gas chromatography/mass spectrometry (GC/MS) to experimentally measure the gas volume of the bubble samples. This measurement was then used as ground truth to test the accuracy of theoretical gas volume predictions based on RMM, NTA (for nanobubbles), and Coulter counter (for microbubbles) measurements. The results show that the headspace GC/MS gas volume measurements agreed well with the theoretical predictions for the RMM of nanobubbles but not NTA. For nanobubbles , the theoretical gas volume using RMM was 10% lower than the experimental GC/MS measurements; meanwhile, using NTA resulted in an 82% lower predicted gas volume. For microbubbles, the experimental gas volume from the GC/MS measurements was 27% lower compared to RMM and 72% less compared to the Coulter counter results. This study demonstrates that the gas volume of nanobubbles and microbubbles can be reliably measured using headspace GC/MS to validate bubble size measurement techniques. We also conclude that the accuracy of theoretical predictions is highly dependent on proper size and concentration measurements.
RESUMO
Myelin is the protective sheath that surrounds nerves in vertebrates to protect axons, which thereby facilitates impulse conduction. Damage to myelin is associated with many neurodegenerative diseases such as multiple sclerosis and also includes spinal cord injury (SCI). The small size of the spinal cord poses formidable challenges to in vivo monitoring of myelination, which we investigated via conducting a structure-activity relationship study to determine the optimum positron-emitting agent to use for imaging myelin using positron emission tomography (PET). From these studies, [18F]PENDAS was identified as the lead agent to use in conjunction with PET imaging to delineate the integrity of spinal cord myelin. A subsequent in vivo PET imaging study of [18F]PENDAS in rats with SCI showed promising pharmacokinetic results that justify further development of imaging markers for diagnosing myelin-related diseases. Additionally, [18F]PENDAS could be valuable in determining the efficacy of therapies that are currently under development.
Assuntos
Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor , Bainha de Mielina/patologia , Tomografia por Emissão de Pósitrons/métodos , Bibliotecas de Moléculas Pequenas/síntese química , Medula Espinal/diagnóstico por imagem , Animais , Encéfalo/metabolismo , Ligantes , Camundongos , Estrutura Molecular , Bainha de Mielina/metabolismo , Ratos , Ratos Sprague-Dawley , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Medula Espinal/metabolismo , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Angiogenesis is a fundamental process in the progression, invasion, and metastasis of tumors. Therapeutic drugs such as bevacizumab and ranibuzumab have thus been developed to inhibit vascular endothelial growth factor (VEFG)-promoted angiogenesis. While these anti-angiogenic drugs have been commonly used in the treatment of cancer, patients often develop significant resistance that limits the efficacy of anti-VEGF therapies to a short period of time. This is in part due to the fact that an independent pathway of angiogenesis exists, which is mediated by 2-(ω-carboxyethyl)pyrrole (CEP) in a TLR2 receptor-dependent manner that can compensate for inhibition of the VEGF-mediated pathway. AIMS: In this work, we evaluated a CEP antibody as a new tumor growth inhibitor that blocks CEP-induced angiogenesis. METHOD: We first evaluated the effectiveness of a CEP antibody as a monotherapy to impede tumor growth in two human tumor xenograft models. We then determined the synergistic effects of bevacizumab and CEP antibody in a combination therapy, which demonstrated that blocking of the CEP-mediated pathway significantly enhanced the anti-angiogenic efficacy of bevacizumab in tumor growth inhibition indicating that CEP antibody is a promising chemotherapeutic drug. To facilitate potential translational studies of CEP-antibody, we also conducted longitudinal imaging studies and identified that FMISO-PET is a non-invasive imaging tool that can be used to quantitatively monitor the anti-angiogenic effects of CEP-antibody in the clinical setting. RESULTS: That treatment with CEP antibody induces hypoxia in tumor tissue WHICH was indicated by 43% higher uptake of [18F]FMISO in CEP antibody-treated tumor xenografs than in the control PBS-treated littermates.
Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Divisão Celular/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Pirróis/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Fator A de Crescimento do Endotélio Vascular/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Myelination is one of the fundamental processes in vertebrates. A major challenge is to quantitatively image myelin distribution in the central nervous system. For this reason, we designed and synthesized a series of fluorinated radioligands that can be radiolabeled as radiotracers for positron emission tomography (PET) imaging of myelin. These newly developed radioligands readily penetrate the blood-brain barrier and selectively bind to myelin membranes in the white matter region. Structure-activity relationship studies of such ligands suggested that optimal permeability could be achieved with calculated lipophilicty in the range of 3-4. After radiolabeling with fluorine-18, the brain uptake and retention of each radioligand were determined by microPET/CT imaging studies. These pharmacokinetic studies led us to identify a lead compound ([(18)F]FMeDAS, 32) with promising in vivo binding properties, which was subsequently validated by ex vivo autoradiography.