Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Soft Matter ; 20(18): 3845-3853, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38651457

RESUMO

We investigate the effects of uniform viscosity gradients on the spontaneous oscillations of an elastic, active filament in viscous fluids. Combining numerical simulations and linear stability analysis, we demonstrate that a viscosity gradient increasing from the filament's base to tip destabilises the system, facilitating its self-oscillation. This effect is elucidated through a reduced-order model, highlighting the delicate balance between destabilising active forces and stabilising viscous forces. Additionally, we reveal that while a perpendicular viscosity gradient to the filament's orientation minimally affects instability, it induces asymmetric ciliary beating, thus generating a net flow along the gradient. Our findings offer new insights into the complex behaviours of biological and artificial filaments in complex fluid environments, contributing to the broader understanding of filament dynamics in heterogeneous viscous media.

2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266946

RESUMO

In the limit of zero Reynolds number (Re), swimmers propel themselves exploiting a series of nonreciprocal body motions. For an artificial swimmer, a proper selection of the power source is required to drive its motion, in cooperation with its geometric and mechanical properties. Although various external fields (magnetic, acoustic, optical, etc.) have been introduced, electric fields are rarely utilized to actuate such swimmers experimentally in unbounded space. Here we use uniform and static electric fields to demonstrate locomotion of a biflagellated sphere at low Re via Quincke rotation. These Quincke swimmers exhibit three different forms of motion, including a self-oscillatory state due to elastohydrodynamic-electrohydrodynamic interactions. Each form of motion follows a distinct trajectory in space. Our experiments and numerical results demonstrate a method to generate, and potentially control, the locomotion of artificial flagellated swimmers.


Assuntos
Locomoção/fisiologia , Modelos Biológicos , Hidrodinâmica , Movimento (Física) , Reologia , Rotação
3.
Langmuir ; 39(19): 6932-6945, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37148258

RESUMO

Controlled colloidal levitation is key to many applications. Recently, it was discovered that polymer microspheres were levitated to a few micrometers in aqueous solutions in alternating current (AC) electric fields. A few mechanisms have been proposed to explain this AC levitation such as electrohydrodynamic flows, asymmetric rectified electric fields, and aperiodic electrodiffusiophoresis. Here, we propose an alternative mechanism based on dielectrophoresis in a spatially inhomogeneous electric field gradient extending from the electrode surface micrometers into the bulk. This field gradient is derived from electrode polarization, where counterions accumulate near electrode surfaces. A dielectric microparticle is then levitated from the electrode surface to a height where the dielectrophoretic lift balances gravity. The dielectrophoretic levitation mechanism is supported by two numerical models. One model assumes point dipoles and solves for the Poisson-Nernst-Planck equations, while the second model incorporates a dielectric sphere of a realistic size and permittivity and uses the Maxwell-stress tensor formulation to solve for the electrical body force. In addition to proposing a plausible levitation mechanism, we further demonstrate that AC colloidal levitation can be used to move synthetic microswimmers to controlled heights. This study sheds light on understanding the dynamics of colloidal particles near an electrode and paves the way to using AC levitation to manipulate colloidal particles, active or passive.

4.
Biophys J ; 120(20): 4391-4398, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34509505

RESUMO

Flagellated bacteria swim by rotating a bundle of helical flagella and commonly explore the surrounding environment in a "run-and-tumble" motility mode. Here, we show that the upcoming flow could impact the bacterial run-and-tumble behavior by affecting the formation and dispersal of the flagellar bundle. Using a dual optical tweezers setup to trap individual bacteria, we characterized the effects of the imposed fluid flow and cell body rotation on the run-and-tumble behavior. We found that the two factors affect the behavior differently, with the imposed fluid flow increasing the running time and decreasing the tumbling time and the cell body rotation decreasing the tumbling time only. Using numerical simulations, we computed the flagellar bundling time as a function of flow velocity, which agrees well with our experimental observations. The mechanical effects we characterized here provide novel, to our knowledge, ingredients for further studies of bacterial chemotaxis in complex environments such as dynamic fluid environments.


Assuntos
Flagelos , Modelos Biológicos , Quimiotaxia , Pinças Ópticas , Natação
5.
Soft Matter ; 17(14): 3829-3839, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33885447

RESUMO

Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical regimes. These results and improved understanding could guide the design of flexible micro-swimmers in non-Newtonian fluids.


Assuntos
Locomoção , Reologia , Viscosidade
6.
Phys Rev Lett ; 119(6): 064502, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949616

RESUMO

To understand the behavior of composite fluid particles such as nucleated cells and double emulsions in flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model system. In addition to its concentric particle-droplet configuration, we numerically explore other eccentric and time-periodic equilibrium solutions, which emerge spontaneously via supercritical pitchfork and Hopf bifurcations. We present the loci of these solutions around the codimension-two point. We adopt a dynamic system approach to model and characterize the coupled behavior of the two bifurcations. By exploring the flow fields and hydrodynamic forces in detail, we identify the role of hydrodynamic particle-droplet interaction which gives rise to these bifurcations.

7.
Soft Matter ; 13(17): 3161-3173, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28397936

RESUMO

Inspired by recent experiments using synthetic microswimmers to manipulate droplets, we investigate the low-Reynolds-number locomotion of a model swimmer (a spherical squirmer) encapsulated inside a droplet of a comparable size in another viscous fluid. Meditated solely by hydrodynamic interactions, the encaged swimmer is seen to be able to propel the droplet, and in some situations both remain in a stable co-swimming state. The problem is tackled using both an exact analytical theory and a numerical implementation based on a boundary element method, with a particular focus on the kinematics of the co-moving swimmer and the droplet in a concentric configuration, and we obtain excellent quantitative agreement between the two. The droplet always moves slower than a swimmer which uses purely tangential surface actuation but when it uses a particular combination of tangential and normal actuations, the squirmer and droplet are able to attain the same velocity and stay concentric for all times. We next employ numerical simulations to examine the stability of their concentric co-movement, and highlight several stability scenarios depending on the particular gait adopted by the swimmer. Furthermore, we show that the droplet reverses the nature of the far-field flow induced by the swimmer: a droplet cage turns a pusher swimmer into a puller, and vice versa. Our work sheds light on the potential development of droplets as self-contained carriers of both chemical content and self-propelled devices for controllable and precise drug deliveries.

8.
Eur Phys J E Soft Matter ; 38(5): 134, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26002531

RESUMO

We study the motion of an elastic capsule through a microchannel characterized by a localized constriction. We consider a capsule with a stress-free spherical shape and impose its steady-state configuration in an infinitely long straight channel as the initial condition for our calculations. We report how the capsule deformation, velocity, retention time, and maximum stress of the membrane are affected by the capillary number, Ca , and the constriction shape. We estimate the deformation by measuring the variation of the three-dimensional surface area and a series of alternative quantities easier to extract from experiments. These are the Taylor parameter, the perimeter and the area of the capsule in the spanwise plane. We find that the perimeter is the quantity that best reproduces the behavior of the three-dimensional surface area. This is maximum at the centre of the constriction and shows a second peak after it, whose location depends on the Ca number. We observe that, in general, area-deformation-correlated quantities grow linearly with Ca , while velocity-correlated quantities saturate for large Ca but display a steeper increase for small Ca . The velocity of the capsule divided by the velocity of the flow displays, surprisingly, two different qualitative behaviors for small and large capillary numbers. Finally, we report that longer constrictions and spanwise wall bounded (versus spanwise periodic) domains cause larger deformations and velocities. If the deformation and velocity in the spanwise wall bounded domains are rescaled by the initial equilibrium deformation and velocity, their behavior is undistinguishable from that in a periodic domain. In contrast, a remarkably different behavior is reported in sinusoidally shaped and smoothed rectangular constrictions indicating that the capsule dynamics is particularly sensitive to abrupt changes in the cross section. In a smoothed rectangular constriction larger deformations and velocities occur over a larger distance.


Assuntos
Elasticidade , Microfluídica , Modelos Teóricos
9.
Soft Matter ; 10(39): 7705-11, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25036026

RESUMO

Guided by extensive numerical simulations, we propose a microfluidic device that can sort elastic capsules by their deformability. The device consists of a duct embedded with a semi-cylindrical obstacle, and a diffuser which further enhances the sorting capability. We demonstrate that the device can operate reasonably well under changes in the initial position of the capsule. The efficiency of the device remains essentially unaltered under small changes of the obstacle shape (from semi-circular to semi-elliptic cross-section). Confinement along the direction perpendicular to the plane of the device increases its efficiency. This work is the first numerical study of cell sorting by a realistic microfluidic device.


Assuntos
Cápsulas , Técnicas Analíticas Microfluídicas/métodos , Modelos Teóricos
10.
Eur Phys J E Soft Matter ; 37(7): 16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25034393

RESUMO

The fluid mechanics of small-scale locomotion has recently attracted considerable attention, due to its importance in cell motility and the design of artificial micro-swimmers for biomedical applications. Most studies on the topic consider the ideal limit of zero Reynolds number. In this paper, we investigate a simple propulsion mechanism --an up-down asymmetric dumbbell rotating about its axis of symmetry-- unable to propel in the absence of inertia in a Newtonian fluid. Inertial forces lead to continuous propulsion for all finite values of the Reynolds number. We study computationally its propulsive characteristics as well as analytically in the small-Reynolds-number limit. We also derive the optimal dumbbell geometry. The direction of propulsion enabled by inertia is opposite to that induced by viscoelasticity.


Assuntos
Movimento (Física) , Rotação , Fenômenos Biofísicos , Movimento Celular , Hidrodinâmica , Modelos Biológicos , Modelos Teóricos , Viscosidade
11.
Nat Commun ; 15(1): 2874, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570495

RESUMO

Active matter drives its constituent agents to move autonomously by harnessing free energy, leading to diverse emergent states with relevance to both biological processes and inanimate functionalities. Achieving maximum reconfigurability of active materials with minimal control remains a desirable yet challenging goal. Here, we employ large-scale, agent-resolved simulations to demonstrate that modulating the activity of a wet phoretic medium alone can govern its solid-liquid-gas phase transitions and, subsequently, laminar-turbulent transitions in fluid phases, thereby shaping its emergent pattern. These two progressively emerging transitions, hitherto unreported, bring us closer to perceiving the parallels between active matter and traditional matter. Our work reproduces and reconciles seemingly conflicting experimental observations on chemically active systems, presenting a unified landscape of phoretic collective dynamics. These findings enhance the understanding of long-range, many-body interactions among phoretic agents, offer new insights into their non-equilibrium collective behaviors, and provide potential guidelines for designing reconfigurable materials.

12.
Adv Sci (Weinh) ; 10(5): e2205382, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538743

RESUMO

Automated manipulation of small particles using external (e.g., magnetic, electric and acoustic) fields has been an emerging technique widely used in different areas. The manipulation typically necessitates a reduced-order physical model characterizing the field-driven motion of particles in a complex environment. Such models are available only for highly idealized settings but are absent for a general scenario of particle manipulation typically involving complex nonlinear processes, which has limited its application. In this work, the authors present a data-driven architecture for controlling particles in microfluidics based on hydrodynamic manipulation. The architecture replaces the difficult-to-derive model by a generally trainable artificial neural network to describe the kinematics of particles, and subsequently identifies the optimal operations to manipulate particles. The authors successfully demonstrate a diverse set of particle manipulations in a numerically emulated microfluidic chamber, including targeted assembly of particles and subsequent navigation of the assembled cluster, simultaneous path planning for multiple particles, and steering one particle through obstacles. The approach achieves both spatial and temporal controllability of high precision for these settings. This achievement revolutionizes automated particle manipulation, showing the potential of data-driven approaches and machine learning in improving microfluidic technologies for enhanced flexibility and intelligence.

13.
Artif Organs ; 34(3): 185-92, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20447042

RESUMO

Computational fluid dynamics (CFD) has been a viable and effective way to predict hydraulic performance, flow field, and shear stress distribution within a blood pump. We developed an axial blood pump with CFD and carried out a CFD-based shape optimization of the diffuser blade to enhance pressure output and diminish backflow in the impeller-diffuser connecting region at a fixed design point. Our optimization combined a computer-aided design package, a mesh generator, and a CFD solver in an automation environment with process integration and optimization software. A genetic optimization algorithm was employed to find the pareto-optimal designs from which we could make trade-off decisions. Finally, a set of representative designs was analyzed and compared on the basis of the energy equation. The role of the inlet angle of the diffuser blade was analyzed, accompanied by its relationship with pressure output and backflow in the impeller-diffuser connecting region.


Assuntos
Biologia Computacional , Desenho Assistido por Computador , Coração Auxiliar , Hemodinâmica , Algoritmos , Simulação por Computador , Desenho de Equipamento , Hemorreologia , Humanos , Modelos Cardiovasculares , Análise Numérica Assistida por Computador , Estresse Mecânico
14.
Phys Rev E ; 101(6-1): 063105, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688621

RESUMO

Cell motility plays important roles in a range of biological processes, such as reproduction and infections. Studies have hypothesized that the ulcer-causing bacterium Helicobacter pylori invades the gastric mucus layer lining the stomach by locally turning nearby gel into sol, thereby enhancing its locomotion through the biological barrier. In this work, we present a minimal theoretical model to investigate how heterogeneity created by a swimmer affects its own locomotion. As a generic locomotion model, we consider the swimming of a spherical squirmer in a purely viscous fluid pocket (representing the liquified or degelled region) surrounded by a Brinkman porous medium (representing the mucus gel). The use of the squirmer model enables an exact, analytical solution to this hydrodynamic problem. We obtain analytical expressions for the swimming speed, flow field, and power dissipation of the swimmer. Depending on the details of surface velocities and fluid properties, our results reveal the existence of a minimum threshold size of mucus gel that a swimmer needs to liquify in order to gain any enhancement in swimming speed. The threshold size can be as much as approximately 30% of the swimmer size. We contrast these predictions with results from previous models and highlight the significant role played by the details of surface actuations. In addition to their biological implications, these results could also inform the design of artificial microswimmers that can penetrate into biological gels for more effective drug delivery.


Assuntos
Modelos Biológicos , Natação , Movimento Celular , Hidrodinâmica , Porosidade , Viscosidade
15.
Nat Biotechnol ; 38(2): 217-224, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768044

RESUMO

Wearable sweat sensors have the potential to provide continuous measurements of useful biomarkers. However, current sensors cannot accurately detect low analyte concentrations, lack multimodal sensing or are difficult to fabricate at large scale. We report an entirely laser-engraved sensor for simultaneous sweat sampling, chemical sensing and vital-sign monitoring. We demonstrate continuous detection of temperature, respiration rate and low concentrations of uric acid and tyrosine, analytes associated with diseases such as gout and metabolic disorders. We test the performance of the device in both physically trained and untrained subjects under exercise and after a protein-rich diet. We also evaluate its utility for gout monitoring in patients and healthy controls through a purine-rich meal challenge. Levels of uric acid in sweat were higher in patients with gout than in healthy individuals, and a similar trend was observed in serum.


Assuntos
Lasers , Suor/química , Tirosina/análise , Ácido Úrico/análise , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Idoso , Desenho de Equipamento , Gota/diagnóstico , Humanos , Microfluídica , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Pele , Temperatura , Tirosina/química , Ácido Úrico/química , Sinais Vitais , Adulto Jovem
16.
J Fluid Mech ; 874: 1021-1040, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32981965

RESUMO

We study here experimentally, numerically and using a lubrication approach, the shape, velocity and lubrication film thickness distribution of a droplet rising in a vertical Hele-Shaw cell. The droplet is surrounded by a stationary immiscible fluid and moves purely due to buoyancy. A low density difference between the two media helps to operate in a regime with capillary number Ca lying between 0.03 and 0.35, where Ca =µo Ud /γ is built with the surrounding oil viscosity γ0 , the droplet velocity Ud and surface tension γ. The experimental data show that in this regime the droplet velocity is not influenced by the thickness of the thin lubricating film and the dynamic meniscus. For iso-viscous cases, experimental and three-dimensional numerical results of the film thickness distribution agree well with each other. The mean film thickness is well captured by the Aussillous & Quéré (Phys. Fluids, vol. 12 (10), 2000, pp. 2367-2371) model with fitting parameters. The droplet also exhibits the 'catamaran' shape that has been identified experimentally for a pressure-driven counterpart (Huerre et al., Phys. Rev. Lett., vol. 115 (6), 2015, 064501). This pattern has been rationalized using a two-dimensional lubrication equation. In particular, we show that this peculiar film thickness distribution is intrinsically related to the anisotropy of the fluxes induced by the droplet's motion.

18.
Anal Chim Acta ; 1089: 108-114, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31627807

RESUMO

Droplet microfluidics has the ability to greatly increase the throughput of screening and sorting of enzymes by carrying reagents in picoliter droplets flowing in inert oils. It was found with the use of a specific surfactant, the interfacial tension of droplets can be very sensitive to droplet pH. This enables the sorting of droplets of different pH when confined droplets encounter a microfabricated trench. The device can be extended to sort enzymes, as a large number of enzymatic reactions lead to the production of an acidic or basic product and a concurrent change in solution pH. The progress of an enzymatic reaction is tracked from the position of a flowing train of droplets. We demonstrate the sorting of esterase isoenzymes based on their enzymatic activity. This label-free technology, that we dub droplet sorting by interfacial tension (SIFT), requires no active components and would have applications for enzyme sorting in high-throughput applications that include enzyme screening and directed evolution of enzymes.


Assuntos
Hidrolases de Éster Carboxílico/isolamento & purificação , Ensaios Enzimáticos/métodos , Acetatos/química , Animais , Hidrolases de Éster Carboxílico/química , Ensaios Enzimáticos/instrumentação , Fluorocarbonos/química , Isoenzimas/química , Isoenzimas/isolamento & purificação , Dispositivos Lab-On-A-Chip , Fígado/enzimologia , Microfluídica/instrumentação , Microfluídica/métodos , Óleos/química , Fenóis/química , Reprodutibilidade dos Testes , Tensão Superficial , Suínos , Água/química
19.
Lab Chip ; 18(7): 1035-1046, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29512658

RESUMO

Inertial microfluidics is an active field of research that deals with crossflow positioning of the suspended entities in microflows. Until now, the majority of the studies have focused on the behavior of rigid particles in order to provide guidelines for microfluidic applications such as sorting and filtering. Deformable entities such as bubbles and droplets are considered in fewer studies despite their importance in multiphase microflows. In this paper, we show that the trajectory of bubbles flowing in rectangular and square microchannels can be controlled by tuning the balance of forces acting on them. A T-junction geometry is employed to introduce bubbles into a microchannel and analyze their lateral equilibrium position in a range of Reynolds (1 < Re < 40) and capillary numbers (0.1 < Ca < 1). We find that the Reynolds number (Re), the capillary number (Ca), the diameter of the bubble (D[combining macron]), and the aspect ratio of the channel are the influential parameters in this phenomenon. For instance, at high Re, the flow pushes the bubble towards the wall while large Ca or D[combining macron] moves the bubble towards the center. Moreover, in the shallow channels, having aspect ratios higher than one, the bubble moves towards the narrower sidewalls. One important outcome of this study is that the equilibrium position of bubbles in rectangular channels is different from that of solid particles. The experimental observations are in good agreement with the performed numerical simulations and provide insights into the dynamics of bubbles in laminar flows which can be utilized in the design of flow based multiphase flow reactors.

20.
Nat Commun ; 8(1): 1960, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234036

RESUMO

Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA