Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
EMBO Rep ; 23(2): e53015, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927789

RESUMO

Long noncoding RNAs (lncRNAs) are abundantly expressed in the nervous system, but their regulatory roles in neuronal differentiation are poorly understood. Using a human embryonic stem cell (hESC)-based 2D neural differentiation approach and a 3D cerebral organoid system, we show that SOX1-OT variant 1 (SOX1-OT V1), a SOX1 overlapping noncoding RNA, plays essential roles in both dorsal cortical neuron differentiation and ventral GABAergic neuron differentiation by facilitating SOX1 expression. SOX1-OT V1 physically interacts with HDAC10 through its 5' region, acts as a decoy to block HDAC10 binding to the SOX1 promoter, and thus maintains histone acetylation levels at the SOX1 promoter. SOX1 in turn activates ASCL1 expression and promotes neuronal differentiation. Taken together, we identify a SOX1-OT V1/HDAC10-SOX1-ASCL1 axis, which promotes neurogenesis, highlighting a role for lncRNAs in hESC neuronal differentiation.


Assuntos
Células-Tronco Embrionárias Humanas , Neurônios/citologia , RNA Longo não Codificante , Fatores de Transcrição SOXB1 , Diferenciação Celular/genética , Histona Desacetilases/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Neurônios/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
2.
Nucleic Acids Res ; 49(4): 1935-1950, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544864

RESUMO

Long noncoding RNAs (lncRNAs) play a wide range of roles in the epigenetic regulation of crucial biological processes, but the functions of lncRNAs in cortical development are poorly understood. Using human embryonic stem cell (hESC)-based 2D neural differentiation approach and 3D cerebral organoid system, we identified that the lncRNA PAUPAR, which is adjacent to PAX6, plays essential roles in cortical differentiation by interacting with PAX6 to regulate the expression of a large number of neural genes. Mechanistic studies showed that PAUPAR confers PAX6 proper binding sites on the target neural genes by directly binding the genomic regions of these genes. Moreover, PAX6 recruits the histone methyltransferase NSD1 through its C-terminal PST enrichment domain, then regulate H3K36 methylation and the expression of target genes. Collectively, our data reveal that the PAUPAR/PAX6/NSD1 complex plays a critical role in the epigenetic regulation of hESC cortical differentiation and highlight the importance of PAUPAR as an intrinsic regulator of cortical differentiation.


Assuntos
Córtex Cerebral/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição PAX6/metabolismo , RNA Longo não Codificante/metabolismo , Sítios de Ligação , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Embrionárias/citologia , Deleção de Genes , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Metilação , Organoides , RNA Longo não Codificante/genética
3.
Stem Cells ; 38(7): 834-848, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32277787

RESUMO

Large intergenic noncoding RNAs (lincRNAs) in ESCs may play an important role in the maintenance of pluripotency. The identification of stem cell-specific lincRNAs and their interacting partners will deepen our understanding of the maintenance of stem cell pluripotency. We identified a lincRNA, LincQ, which is specifically expressed in ESCs and is regulated by core pluripotent transcription factors. It was rapidly downregulated during the differentiation process. Knockdown of LincQ in ESCs led to differentiation, downregulation of pluripotency-related genes, and upregulation of differentiation-related genes. We found that exon 1 of LincQ can specifically bind to Sox2. The Soxp region in Sox2, rather than the high mobility group domain, is responsible for LincQ binding. Importantly, the interaction between LincQ and Sox2 is required for the maintenance of pluripotency in ESCs and the transcription of pluripotency genes. Esrrb and Tfcp2l1 are key downstream targets of LincQ and Sox2, since overexpression of Esrrb and Tfcp2l1 can restore the loss of ESC pluripotency that is induced by LincQ depletion. In summary, we found that LincQ specifically interacts with Sox2 and contributes to the maintenance of pluripotency, highlighting the critical role of lincRNA in the pluripotency regulatory network.


Assuntos
Células-Tronco Embrionárias Murinas , RNA Longo não Codificante , Animais , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
4.
Nucleic Acids Res ; 46(8): 3906-3920, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29529255

RESUMO

Previous studies have revealed the critical roles of N6-methyladenosine (m6A) modification of mRNA in embryonic stem cells (ESCs), but the biological function of m6A in large intergenic noncoding RNA (lincRNA) is unknown. Here, we showed that the internal m6A modification of linc1281 mediates a competing endogenous RNA (ceRNA) model to regulate mouse ESC (mESC) differentiation. We demonstrated that loss of linc1281 compromises mESC differentiation and that m6A is highly enriched within linc1281 transcripts. Linc1281 with RRACU m6A sequence motifs, but not an m6A-deficient mutant, restored the phenotype in linc1281-depleted mESCs. Mechanistic analyses revealed that linc1281 ensures mESC identity by sequestering pluripotency-related let-7 family microRNAs (miRNAs), and this RNA-RNA interaction is m6A dependent. Collectively, these findings elucidated the functional roles of linc1281 and its m6A modification in mESCs and identified a novel RNA regulatory mechanism, providing a basis for further exploration of broad RNA epigenetic regulatory patterns.


Assuntos
Adenosina/análogos & derivados , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adenosina/química , Adenosina/metabolismo , Animais , Sequência de Bases , Diferenciação Celular/genética , Células Cultivadas , Epigênese Genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/química , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Nucleic Acids Res ; 46(12): 6026-6040, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733394

RESUMO

Sin3a is a core component of histone-deacetylation-activity-associated transcriptional repressor complex, playing important roles in early embryo development. Here, we reported that down-regulation of Sin3a led to the loss of embryonic stem cell (ESC) self-renewal and skewed differentiation into mesendoderm lineage. We found that Sin3a functioned as a transcriptional coactivator of the critical Nodal antagonist Lefty1 through interacting with Tet1 to de-methylate the Lefty1 promoter. Further studies showed that two amino acid residues (Phe147, Phe182) in the PAH1 domain of Sin3a are essential for Sin3a-Tet1 interaction and its activity in regulating pluripotency. Furthermore, genome-wide analyses of Sin3a, Tet1 and Pol II ChIP-seq and of 5mC MeDIP-seq revealed that Sin3a acted with Tet1 to facilitate the transcription of a set of their co-target genes. These results link Sin3a to epigenetic DNA modifications in transcriptional activation and have implications for understanding mechanisms underlying versatile functions of Sin3a in mouse ESCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Ativação Transcricional , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Fatores de Determinação Direita-Esquerda/genética , Fatores de Determinação Direita-Esquerda/metabolismo , Camundongos , Proteína Nodal/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3
6.
Nucleic Acids Res ; 43(11): 5409-22, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25934799

RESUMO

The maturation of induced pluripotent stem cells (iPS) is one of the limiting steps of somatic cell reprogramming, but the underlying mechanism is largely unknown. Here, we reported that knockdown of histone deacetylase 2 (HDAC2) specifically promoted the maturation of iPS cells. Further studies showed that HDAC2 knockdown significantly increased histone acetylation, facilitated TET1 binding and DNA demethylation at the promoters of iPS cell maturation-related genes during the transition of pre-iPS cells to a fully reprogrammed state. We also found that HDAC2 competed with TET1 in the binding of the RbAp46 protein at the promoters of maturation genes and knockdown of TET1 markedly prevented the activation of these genes. Collectively, our data not only demonstrated a novel intrinsic mechanism that the HDAC2-TET1 switch critically regulates iPS cell maturation, but also revealed an underlying mechanism of the interplay between histone acetylation and DNA demethylation in gene regulation.


Assuntos
Reprogramação Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilase 2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ativação Transcricional , Acetilação , Animais , Células Cultivadas , DNA/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/genética , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos Transgênicos
7.
J Biol Chem ; 290(18): 11282-92, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25814666

RESUMO

Human BUB3 is a key mitotic checkpoint factor that recognizes centromeric components and recruits other mitotic checkpoint molecules to the unattached kinetochore. The key amino acid residues responsible for its localization are not yet defined. In this study, we identified a motif from Lys(216) to Lys(222) in BUB3 as its nuclear localization signal. A BUB3 mutant with deletion of this motif (Del216-222) was found to localize to both the cytoplasm and the nucleus, distinct from the exclusively nuclear distribution of wild-type BUB3. Further analysis revealed that residues Glu(213), Lys(216), Lys(217), Lys(218), Tyr(219), and Phe(221), but not Lys(222), contribute to nuclear localization. Interestingly, the nuclear localization signal was also critical for the kinetochore localization of BUB3. The deletion mutant Del216-222 and a subtle mutant with four residue changes in this region (E213Q/K216E/K217E/K218E (QE)) did not localize to the kinetochore efficiently or mediate mitotic checkpoint arrest. Protein interaction data suggested that the QE mutant was able to interact with BUB1, MAD2, and BubR1 but that its association with the centromeric components CENP-A and KNL1 was impaired. A motif from Leu(61) to Leu(65) in CENP-A was found to be involved in the association of BUB3 and CENP-A in cells; however, further assays suggested that CENP-A does not physically interact with BUB3 and does not affect BUB3 localization. Our findings help to dissect the mechanisms of BUB3 in mitotic checkpoint signaling.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Lisina , Pontos de Checagem da Fase M do Ciclo Celular , Sinais de Localização Nuclear , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Sequência de Aminoácidos , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/metabolismo , Células HEK293 , Células HeLa , Humanos , Cinetocoros/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , Transdução de Sinais
8.
Stem Cells ; 33(3): 661-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25335925

RESUMO

Leukemia inhibitory factor/Stat3 signaling is critical for maintaining the self-renewal and differentiation potential of mouse embryonic stem cells (mESCs). However, the upstream effectors of this pathway have not been clearly defined. Here, we show that periodic tryptophan protein 1 (Pwp1), a WD-40 repeat-containing protein associated with histone H4 modification, is required for the exit of mESCs from the pluripotent state into all lineages. Knockdown (KD) of Pwp1 does not affect mESC proliferation, self-renewal, or apoptosis. However, KD of Pwp1 impairs the differentiation potential of mESCs both in vitro and in vivo. PWP1 chromatin immunoprecipitation-seq results revealed that the PWP1-occupied regions were marked with significant levels of H4K20me3. Moreover, Pwp1 binds to sites in the upstream region of Stat3. KD of Pwp1 decreases the level of H4K20me3 in the upstream region of Stat3 gene and upregulates the expression of Stat3. Furthermore, Pwp1 KD mESCs recover their differentiation potential through suppressing the expression of Stat3 or inhibiting the tyrosine phosphorylation of STAT3. Together, our results suggest that Pwp1 plays important roles in the differentiation potential of mESCs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas Nucleares/genética , Transdução de Sinais
9.
J Biol Chem ; 288(39): 28021-33, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23897811

RESUMO

Aberrant expression of histone deacetylases (HDACs) is associated with carcinogenesis. Some HDAC inhibitors are widely considered as promising anticancer therapeutics. A major obstacle for development of HDAC inhibitors as highly safe and effective anticancer therapeutics is that our current knowledge on the contributions of different HDACs in various cancer types remains scant. Here we report that the expression level of HDAC10 was significantly lower in patients exhibiting lymph node metastasis compared with that in patients lacking lymph node metastasis in human cervical squamous cell carcinoma. Forced expression of HDAC10 in cervical cancer cells significantly inhibited cell motility and invasiveness in vitro and metastasis in vivo. Mechanistically, HDAC10 suppresses expression of matrix metalloproteinase (MMP) 2 and 9 genes, which are known to be critical for cancer cell invasion and metastasis. At the molecular level, HDAC10 binds to MMP2 and -9 promoter regions, reduces the histone acetylation level, and inhibits the binding of RNA polymerase II to these regions. Furthermore, an HDAC10 mutant lacking histone deacetylase activity failed to mimic the functions of full-length protein. These results identify a critical role of HDAC10 in suppression of cervical cancer metastasis, underscoring the importance of developing isoform-specific HDAC inhibitors for treatment of certain cancer types such as cervical squamous cell carcinoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias do Colo do Útero/metabolismo , Adulto , Idoso , Animais , Movimento Celular , Inibidores Enzimáticos/farmacologia , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Metástase Neoplásica , Regiões Promotoras Genéticas , Isoformas de Proteínas/metabolismo , Interferência de RNA , Neoplasias do Colo do Útero/patologia
10.
J Biol Chem ; 288(20): 14510-14521, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23543735

RESUMO

The lysine acetyltransferases play crucial but complex roles in cancer development. GCN5 is a lysine acetyltransferase that generally regulates gene expression, but its role in cancer development remains largely unknown. In this study, we report that GCN5 is highly expressed in non-small cell lung cancer tissues and that its expression correlates with tumor size. We found that the expression of GCN5 promotes cell growth and the G1/S phase transition in multiple lung cancer cell lines. Further study revealed that GCN5 regulates the expression of E2F1, cyclin D1, and cyclin E1. Our reporter assays indicated that the expression of GCN5 enhances the activities of the E2F1, cyclin D1, and cyclin E1 promoters. ChIP experiments suggested that GCN5 binds directly to these promoters and increases the extent of histone acetylation within these regions. Mechanistic studies suggested that GCN5 interacts with E2F1 and is recruited by E2F1 to the E2F1, cyclin D1, and cyclin E1 promoters. The function of GCN5 in lung cancer cells is abrogated by the knockdown of E2F1. Finally, we confirmed that GCN5 regulates the expression of E2F1, cyclin D1, and cyclin E1 and potentiates lung cancer cell growth in a mouse tumor model. Taken together, our results demonstrate that GCN5 specifically potentiates lung cancer growth by directly promoting the expression of E2F1, cyclin D1, and cyclin E1 in an E2F1-dependent manner. Our study identifies a specific and novel function of GCN5 in lung cancer development and suggests that the GCN5-E2F1 interaction represents a potential target for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclina D1/metabolismo , Ciclina E/metabolismo , Fator de Transcrição E2F1/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Oncogênicas/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lisina/química , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos
11.
Cell Physiol Biochem ; 33(1): 97-106, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24480980

RESUMO

BACKGROUND & AIMS: MicroRNAs (miRNAs) have been shown to play essential roles in HSCs activation which contributes to hepatic fibrosis. Our previous miRNA microarray results suggested that miR-126 might be decreased during HSCs activation as other studies. The aim of this study is to investigate the role of miR-126 during HSCs activation. METHODS: In this study, the expression of miR-126 during HSCs activation was measured and confirmed by qRT-PCR. Then, miR-126 expression was restored by transfection of lentivirus vector encoding miR-126. Futhermore, cell proliferation was assayed by the cell counting kit-8 (CCK-8), cell migration was assayed by transwell assay, and the markers of activation of HSCs, α-SMA and collagen type I, were assayed by qRT-PCR, Western Blotting, Immunostaining and ELISA. Luciferase reporter assay was used to find the target of miR-126, and Western Blotting and Immunostaining was used to validate the target of miR-126. Then, the expression and the role of the target of miR-126 during HSCs activation was further assessed. RESULTS: The expression of miR-126 was confirmed to be significantly decreased during HSCs activation. Overexpression of miR-126 significantly inhibited HSCs migration but did not affect HSCs proliferation. The expression of α-SMA and collagen type I were both obviously decreased by miR-126 restoration. CRK was found to be the target of miR-126 and overexpression of miR-126 significantly inhibited CRK expression. And it was found that overexpression of CRK also significantly decreased miR-126 expression and promoted HSCs activation. CONCLUSIONS: Our study showed that overexpression of miR-126 significantly inhibited the activation and migration of HSCs through targeting CRK which can also decrease miR-126 expression and promote HSCs activation.


Assuntos
Movimento Celular , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células , Colágeno Tipo I/metabolismo , Regulação da Expressão Gênica , Masculino , MicroRNAs/genética , Dados de Sequência Molecular , Ratos Sprague-Dawley
12.
Stem Cells ; 30(8): 1645-54, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696098

RESUMO

Induced pluripotent stem (iPS) cells, especially those reprogrammed from patient somatic cells, have a great potential usage in regenerative medicine. The expression of p53 has been proven as a key barrier limiting iPS cell generation, but how p53 is regulated during cell reprogramming remains unclear. In this study, we found that the ectopic expression of miR-138 significantly improved the efficiency of iPS cell generation via Oct4, Sox2, and Klf4, with or without c-Myc (named as OSKM or OSK, respectively), without sacrificing the pluripotent characteristics of the generated iPS cells. Exploration of the mechanism showed that miR-138 directly targeted the 3' untranslated region (UTR) of p53, significantly decreasing the expression of p53 and its downstream genes. Furthermore, the ectopic expression of p53 having a mutant 3'-UTR, which cannot be bound by miR-138, seriously impaired the effect of miR-138 on p53 signaling and OSKM-initiated somatic cell reprogramming. Combined with the fact that miR-138 is endogenously expressed in fibroblasts, iPS cells, and embryonic stem cells, our study demonstrated that regulation of the p53 signaling pathway and promotion of iPS cell generation represent an unrevealed important function of miR-138.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Regulação para Baixo , Técnicas de Inativação de Genes , Fator 4 Semelhante a Kruppel , Camundongos , MicroRNAs/genética , Células NIH 3T3 , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
13.
J Biol Chem ; 285(49): 38730-9, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20884615

RESUMO

Mps1 is a protein kinase that regulates normal mitotic progression and the spindle checkpoint in response to spindle damage. The levels of Mps1 are relatively low in cells during interphase but elevated in mitosis or upon activation of the spindle checkpoint, although the dynamic range of Mps1 expression and the Mps1 catalytic mechanism have not been carefully characterized. Our recent structural studies of the Mps1 kinase domain revealed that the carboxyl-terminal tail region of Mps1 is unstructured, raising the question of whether this region has any functional role in Mps1 catalysis. Here we first determined the cellular abundance of Mps1 during cell cycle progression and found that Mps1 levels vary between 60,000 per cell in early G(1) and 110,000 per cell during mitosis. We studied phosphorylation of a number of Mps1 substrates in vitro and in culture cells. Unexpectedly, we found that the unstructured carboxyl-terminal region of Mps1 plays an essential role in substrate recruitment. Kinetics studies using the purified recombinant wild type and mutant kinases indicate that the carboxyl-terminal tail is largely dispensable for autophosphorylation of Mps1 but critical for trans-phosphorylation of substrates in vitro and in cultured cells. Mps1 mutant without the unstructured tail region is defective in mediating spindle assembly checkpoint activation. Our results underscore the importance of the unstructured tail region of Mps1 in kinase activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fase G1/fisiologia , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Catálise , Proteínas de Ciclo Celular/genética , Ativação Enzimática/fisiologia , Células HeLa , Humanos , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fuso Acromático/genética
14.
Cell Death Differ ; 27(2): 808-825, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31296962

RESUMO

Aging-related cognitive ability impairments are one of the main threats to public health, and impaired hippocampal neurogenesis is a major cause of cognitive decline during aging. However, the regulation of adult neurogenesis in the hippocampus requires further study. Here, we investigated the role of microRNA-153 (miR-153), a highly conserved microRNA in mice and humans, in adult neurogenesis. During the passaging of neural stem cells (NSCs) in vitro, endogenous miR-153 expression was downregulated, with a decrease in neuronal differentiation ability. In addition, miR-153 overexpression increased the neurogenesis of NSCs. Further studies showed that miR-153 regulated neurogenesis by precisely targeting the Notch signaling pathway through inhibition of Jagged1 and Hey2 translation. In vivo analysis demonstrated that miR-153 expression was decreased in the hippocampi of aged mice with impaired cognitive ability, and that miR-153 overexpression in the hippocampus promoted neurogenesis and markedly increased the cognitive abilities of the aged mice. Overall, our findings revealed that miR-153 affected neurogenesis by regulating the Notch signaling pathway and elucidated the function of miR-153 in aging-related, hippocampus-dependent cognitive ability impairments, and neurodegenerative diseases.


Assuntos
Envelhecimento , Disfunção Cognitiva/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Receptores Notch/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células-Tronco Neurais/citologia , Neurogênese , Transdução de Sinais
15.
J Cell Mol Med ; 13(8B): 1679-1694, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19120698

RESUMO

Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-A-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices EF and F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Ativação Enzimática , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases , Especificidade por Substrato
16.
Cell Discov ; 5: 47, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754456

RESUMO

Telomere maintenance is critical for chromosome stability. Here we report that periodic tryptophan protein 1 (PWP1) is involved in regulating telomere length homeostasis. Pwp1 appears to be essential for mouse development and embryonic stem cell (ESC) survival, as homozygous Pwp1-knockout mice and ESCs have never been obtained. Heterozygous Pwp1-knockout mice had shorter telomeres and decreased reproductive capacity. Pwp1 depletion induced rapid telomere shortening accompanied by reduced shelterin complex and increased DNA damage in telomeric regions. Mechanistically, PWP1 bound and stabilized the shelterin complex via its WD40 domains and regulated the overall level of H4K20me3. The rescue of telomere length in Pwp1-deficient cells by PWP1 overexpression depended on SUV4-20H2 co-expression and increased H4K20me3. Therefore, our study revealed a novel protein involved in telomere homeostasis in both mouse and human cells. This knowledge will improve our understanding of how chromatin structure and histone modifications are involved in maintaining telomere integrity.

17.
Cell Stem Cell ; 22(6): 893-908.e6, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29754779

RESUMO

Large intergenic non-coding RNAs (lincRNAs) play widespread roles in epigenetic regulation during multiple differentiation processes, but little is known about their mode of action in cardiac differentiation. Here, we identified the key roles of a lincRNA, termed linc1405, in modulating the core network of cardiac differentiation by functionally interacting with Eomes. Chromatin- and RNA-immunoprecipitation assays showed that exon 2 of linc1405 physically mediates a complex consisting of Eomes, trithorax group (TrxG) subunit WDR5, and histone acetyltransferase GCN5 binding at the enhancer region of Mesp1 gene and activates its expression during cardiac mesoderm specification of embryonic stem cells. Importantly, linc1405 co-localizes with Eomes, WDR5, and GCN5 at the primitive streak, and linc1405 depletion impairs heart development and function in vivo. In summary, linc1405 mediates a Eomes/WDR5/GCN5 complex that contributes to cardiogenesis, highlighting the critical roles of lincRNA-based complexes in the epigenetic regulation of cardiogenesis in vitro and in vivo.


Assuntos
Mesoderma/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Diferenciação Celular , Epigênese Genética/genética , Células HEK293 , Humanos , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Células NIH 3T3 , RNA Longo não Codificante/genética
18.
Oncotarget ; 8(25): 40654-40667, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28489565

RESUMO

Centromere protein A (CENP-A) is a variant of core histone H3 that marks the centromere's location on the chromosome. The mechanisms that target the protein to the nucleus and the centromere have not been defined. In this study, we found that deletion of the first 53 but not the first 29 residues of CENP-A from the amino-terminus, resulted in its cytoplasmic localization. Two motifs, R42R43R44 and K49R52K53K56, which are reported to be required for DNA contact in the centromere nucleosome, were found to be critical for CENP-A nuclear accumulation. These two motifs potentially mediated its interaction with Importin-ß but were not involved in CENP-A centromeric localization. A third novel motif, L60L61I62R63K64, was found to be essential for the centromeric accumulation of CENP-A. The nonpolar hydrophobic residues L60L61I62, but not the basic residues R63K64, were found to be the most important residues. A protein interaction assay suggested that this motif is not involved in the interaction of CENP-A with its deposition factors but potentially mediates its interaction with core histone H4 and CENP-B. Our study uncovered the role of the amino-terminus of CENP-A in localization.


Assuntos
Motivos de Aminoácidos , Núcleo Celular/metabolismo , Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Sequência de Aminoácidos , Proteína Centromérica A/genética , Citometria de Fluxo/métodos , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Mutação , Nucleossomos/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos
19.
Cell Rep ; 18(12): 2880-2892, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28329681

RESUMO

Induced pluripotent stem cells (iPSCs) have great potential for treating age-related diseases, but the genome integrity of iPSCs is critically important. Here, we demonstrate that non-homologous end joining (NHEJ), rather than homologous recombination (HR), is less efficient in iPSCs from old mice than young mice. We further find that Sirt6 is downregulated in iPSCs from old mice. Sirt6 directly binds to Ku80 and facilitates the Ku80/DNA-PKcs interaction, thus promoting DNA-PKcs phosphorylation at residue S2056, leading to efficient NHEJ. Rescue experiments show that introducing a combination of Sirt6 and the Yamanaka factors during reprogramming significantly promotes DNA double-strand break (DSB) repair by activating NHEJ in iPSCs derived from old mice. Thus, our study suggests a strategy to improve the quality of iPSCs derived from old donors by activating NHEJ and stabilizing the genome.


Assuntos
Envelhecimento/metabolismo , Reparo do DNA por Junção de Extremidades , Células-Tronco Pluripotentes Induzidas/metabolismo , Sirtuínas/metabolismo , Animais , Reprogramação Celular , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA , Fibroblastos/metabolismo , Instabilidade Genômica , Autoantígeno Ku/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Nucleares , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Pele/citologia
20.
Oncotarget ; 8(37): 61338-61349, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28977867

RESUMO

Angiogenesis is crucially involved in many physiological and pathological processes including tumor growth, but the molecular mechanisms regulating angiogenesis are incompletely understood. In this study, we investigated the functions and mechanism of histone deacetylase 10 (HDAC10), a member of the HDAC II family, in regulation of angiogenesis. HDAC10 overexpression in human umbilical vein endothelial cells (HUVECs) promoted tube formation, whereas depletion of HDAC10 from HUVECs inhibited tube formation in vitro and in vivo. Mechanistically, HDAC10 overexpression increased extracellular-regulated kinase 1/2 (ERK1/2) activation, whereas depletion of HDAC10 inhibited ERK1/2 activation. Finally, HDAC10 promoted ERK1/2 phosphorylation by deacetylating the promoter of protein tyrosine phosphatase, non-receptor type 22 (PTPN22) and inhibiting the expression of PTPN22, which is a negative regulator of ERK phosphorylation. Collectively, our results identify HDAC10 as a key regulator of angiogenesis and reveal that HDAC10 functions in this process by binding and deacetylating the PTPN22 promoter and subsequently inhibiting PTPN22 expression, which in turn increases ERK1/2 phosphorylation. Our studies suggest that HDAC10 is a potential target for therapeutic intervention to inhibit angiogenesis and tumor growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA