Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 157(24): 244701, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36586986

RESUMO

Ambient pressure x-ray photoelectron spectroscopy (APXPS) can provide a compelling platform for studying an analyte's oxidation and reduction reactions in solutions. This paper presents proof-of-principle operando measurements of a model organometallic complex, iron hexacyanide, in an aqueous solution using the dip-and-pull technique. The data demonstrates that the electrochemically active liquid meniscuses on the working electrodes can undergo controlled redox reactions which were observed using APXPS. A detailed discussion of several critical experimental considerations is included as guidance for anyone undertaking comparable experiments.

2.
J Synchrotron Radiat ; 28(Pt 2): 624-636, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650575

RESUMO

HIPPIE is a soft X-ray beamline on the 3 GeV electron storage ring of the MAX IV Laboratory, equipped with a novel ambient-pressure X-ray photoelectron spectroscopy (APXPS) instrument. The endstation is dedicated to performing in situ and operando X-ray photoelectron spectroscopy experiments in the presence of a controlled gaseous atmosphere at pressures up to 30 mbar [1 mbar = 100 Pa] as well as under ultra-high-vacuum conditions. The photon energy range is 250 to 2200 eV in planar polarization and with photon fluxes >1012 photons s-1 (500 mA ring current) at a resolving power of greater than 10000 and up to a maximum of 32000. The endstation currently provides two sample environments: a catalysis cell and an electrochemical/liquid cell. The former allows APXPS measurements of solid samples in the presence of a gaseous atmosphere (with a mixture of up to eight gases and a vapour of a liquid) and simultaneous analysis of the inlet/outlet gas composition by online mass spectrometry. The latter is a more versatile setup primarily designed for APXPS at the solid-liquid (dip-and-pull setup) or liquid-gas (liquid microjet) interfaces under full electrochemical control, and it can also be used as an open port for ad hoc-designed non-standard APXPS experiments with different sample environments. The catalysis cell can be further equipped with an IR reflection-absorption spectrometer, allowing for simultaneous APXPS and IR spectroscopy of the samples. The endstation is set up to easily accommodate further sample environments.

3.
Zhonghua Nan Ke Xue ; 21(2): 153-6, 2015 Feb.
Artigo em Zh | MEDLINE | ID: mdl-25796690

RESUMO

OBJECTIVE: To study 3 different strategies of urine drainage following hypospadias urethroplasty, the clinical nursing in their application, and their effects. METHODS: We retrospectively analyzed the clinical data of 595 cases of hypospadias treated by urethroplasty. After surgery, 133 of the patients underwent urine drainage by suprapubic cystostomy (group A), 202 by urethral stent- tube indwelling (group B), and 260 by early initiative micturition with the urethral stent-tube (group C). All the patients received routine postoperative nursing care required for hypospadias repair. RESULTS: Operations were successfully completed in all the cases. Group C showed a remarkably shorter hospital stay and lower incidence rates of urinary fistula and urethral stricture than groups A and B (P<0.05), but there were no significant differences in the three indexes between A and B (P<0.05). CONCLUSION: For urine drainage following hypospadias repair, early initiative micturition with the urethral stent-tube can significantly reduce postoperative complications, decrease difficulties and workload of nursing care, and shorten the hospital stay of the patient.


Assuntos
Drenagem/métodos , Hipospadia/cirurgia , Uretra/cirurgia , Urina , Cistostomia , Humanos , Tempo de Internação , Masculino , Complicações Pós-Operatórias/prevenção & controle , Procedimentos de Cirurgia Plástica , Estudos Retrospectivos , Stents , Estreitamento Uretral/prevenção & controle , Fístula Urinária/prevenção & controle , Procedimentos Cirúrgicos Urológicos Masculinos
4.
ACS Catal ; 13(9): 6203-6213, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37180966

RESUMO

The metastability of supported metal nanoparticles limits their application in heterogeneous catalysis at elevated temperatures due to their tendency to sinter. One strategy to overcome these thermodynamic limits on reducible oxide supports is encapsulation via strong metal-support interaction (SMSI). While annealing-induced encapsulation is a well-explored phenomenon for extended nanoparticles, it is as yet unknown whether the same mechanisms hold for subnanometer clusters, where concomitant sintering and alloying might play a significant role. In this article, we explore the encapsulation and stability of size-selected Pt5, Pt10, and Pt19 clusters deposited on Fe3O4(001). In a multimodal approach using temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM), we demonstrate that SMSI indeed leads to the formation of a defective, FeO-like conglomerate encapsulating the clusters. By stepwise annealing up to 1023 K, we observe the succession of encapsulation, cluster coalescence, and Ostwald ripening, resulting in square-shaped crystalline Pt particles, independent of the initial cluster size. The respective sintering onset temperatures scale with the cluster footprint and thus size. Remarkably, while small encapsulated clusters can still diffuse as a whole, atom detachment and thus Ostwald ripening are successfully suppressed up to 823 K, i.e., 200 K above the Hüttig temperature that indicates the thermodynamic stability limit.

5.
Environ Sci Atmos ; 2(2): 137-145, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35419521

RESUMO

Salt aerosols play important roles in many processes related to atmospheric chemistry and the climate systems on both Earth and Mars. Complicated and still poorly understood processes occur on the salt surfaces when interacting with water vapor. In this study, ambient pressure X-ray photoelectron spectroscopy (APXPS) is used to characterize the surface chemical environment of Martian salt analogues originating from saline lakes and playas, as well as their responses to varying relative humidities. Generally, APXPS shows similar ionic compositions to those observed by ion chromatography (IC). However, XPS is a surface-sensitive method while IC is bulk-sensitive and differences are observed for species that preferentially partition to the surface or the bulk. Element-selective surface enhancement of Cl- is observed, likely caused by the presence of SO4 2-. In addition, Mg2+ is concentrated on the surface while Na+ is relatively depleted in the surface layer. Hence, the cations (Na+ and Mg2+) and the anions (Cl- and SO4 2-) show competitive correlations. At elevated relative humidity (RH), no major spectral changes were observed in the XPS results, except for the growth of an oxygen component originating from condensed H2O. Near-edge X-ray absorption fine structure (NEXAFS) measurements show that the magnesium and sodium spectra are sensitive to the presence of water, and the results imply that the surface is fully solvated already at RH = 5%. The surface solvation is also fully reversible as the RH is reduced. No major differences are observed between sample types and sample locations, indicating that the salts originated from saline lakes commonly have solvated surfaces under the environmental conditions on Earth.

6.
J Phys Chem C Nanomater Interfaces ; 126(33): 14116-14124, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36060283

RESUMO

Hydrogenated graphene (H-Gr) is an extensively studied system not only because of its capabilities as a simplified model system for hydrocarbon chemistry but also because hydrogenation is a compelling method for Gr functionalization. However, knowledge of how H-Gr interacts with molecules at higher pressures and ambient conditions is lacking. Here we present experimental and theoretical evidence that room temperature O2 exposure at millibar pressures leads to preferential removal of H dimers on H-functionalized graphene, leaving H clusters on the surface. Our density functional theory (DFT) analysis shows that the removal of H dimers is the result of water or hydrogen peroxide formation. For water formation, we show that the two H atoms in the dimer motif attack one end of the physisorbed O2 molecule. Moreover, by comparing the reaction pathways in a vacuum with the ones on free-standing graphene and on the graphene/Ir(111) system, we find that the main role of graphene is to arrange the H atoms in geometrical positions, which facilitates the activation of the O=O double bond.

7.
ACS Appl Mater Interfaces ; 13(40): 47629-47641, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590812

RESUMO

A setup capable of conducting gas pulse-X-ray probe ambient pressure photoelectron spectroscopy with high time resolution is presented. The setup makes use of a fast valve that creates gas pulses with an internal pressure in the mbar range and a rising edge of few hundreds of microseconds. A gated detector based on a fast camera is synchronized with the valve operation to measure X-ray photoemission spectra with up to 20 µs time resolution. The setup is characterized in several experiments in which the N2 gas is pulsed either into vacuum or a constant flow of another gas. The observed width of the pulse rising edge is 80 µs, and the maximum internal pulse pressure is ∼1 mbar. The CO oxidation reaction over Pt (111) was used to demonstrate the capability of the setup to correlate the gas phase composition with that of the surface during transient supply of CO gas into an O2 stream. Thus, formation of both chemisorbed and oxide oxygen species was observed prior to CO gas perturbation. Also, the data indicated that both the Langmuir-Hinshelwood and Mars-van-Krevelen mechanisms play an important role in the oxidation of carbon monoxide under ambient conditions.

8.
Nat Commun ; 12(1): 6117, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675205

RESUMO

Heterogeneous catalyst surfaces are dynamic entities that respond rapidly to changes in their local gas environment, and the dynamics of the response is a decisive factor for the catalysts' action and activity. Few probes are able to map catalyst structure and local gas environment simultaneously under reaction conditions at the timescales of the dynamic changes. Here we use the CO oxidation reaction and a Pd(100) model catalyst to demonstrate how such studies can be performed by time-resolved ambient pressure photoelectron spectroscopy. Central elements of the method are cyclic gas pulsing and software-based event-averaging by image recognition of spectral features. A key finding is that at 3.2 mbar total pressure a metallic, predominantly CO-covered metallic surface turns highly active for a few seconds once the O2:CO ratio becomes high enough to lift the CO poisoning effect before mass transport limitations triggers formation of a √5 oxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA