Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 435(2): 113931, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253280

RESUMO

The mortality rate linked with nephrotic syndrome (NS) is quite high. The renal tubular injury influences the response of NS patients to steroid treatment. KN motif and ankyrin repeat domains 2 (KANK2) regulates actin polymerization, which is required for renal tubular cells to maintain their function. In this study, we found that the levels of KANK2 in patients with NS were considerably lower than those in healthy controls, especially in NS patients with acute kidney injury (AKI). To get a deeper understanding of the KANK2 transcriptional control mechanism, the core promoter region of the KANK2 gene was identified. KANK2 was further found to be positively regulated by E2F Transcription Factor 1 (E2F1), Transcription Factor AP-2 Gamma (TFAP2C), and Nuclear Respiratory Factor 1 (NRF1), both at mRNA and protein levels. Knocking down E2F1, TFAP2C, or NRF1 deformed the cytoskeleton of renal tubular cells and reduced F-actin content. EMSA and ChIP assays confirmed that all three transcription factors could bind to the upstream promoter transcription site of KANK2 to transactivate KANK2 in renal tubular epithelial cells. Our study suggests that E2F1, TFAP2C, and NRF1 play essential roles in regulating the KANK2 transcription, therefore shedding fresh light on the development of putative therapeutic options for the treatment of NS patients.


Assuntos
Síndrome Nefrótica , Fator 1 Nuclear Respiratório , Humanos , Fator 1 Nuclear Respiratório/metabolismo , Síndrome Nefrótica/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição AP-2/genética
2.
World J Psychiatry ; 14(6): 784-793, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38984326

RESUMO

BACKGROUND: The expression pattern of gamma aminobutyric acid (GABA) receptor subunits are commonly altered in patients with schizophrenia, which may lead to nerve excitation/inhibition problems, affecting cognition, emotion, and behavior. AIM: To explore GABA receptor expression and its relationship with schizophrenia and to provide insights into more effective treatments. METHODS: This case-control study enrolled 126 patients with schizophrenia treated at our hospital and 126 healthy volunteers who underwent physical examinations at our hospital during the same period. The expression levels of the GABA receptor subunits were detected using 1H-magnetic resonance spectroscopy. The recognized cognitive battery tool, the MATRICS Consensus Cognitive Battery, was used to evaluate the scores for various dimensions of cognitive function. The correlation between GABA receptor subunit downregulation and schizophrenia was also analyzed. RESULTS: Significant differences in GABA receptor subunit levels were found between the case and control groups (P < 0.05). A significant difference was also found between the case and control groups in terms of cognitive function measures, including attention/alertness and learning ability (P < 0.05). Specifically, as the expression levels of GABRA1 (α1 subunit gene), GABRB2 (ß2 subunit gene), GABRD (δ subunit), and GABRE (ε subunit) decreased, the severity of the patients' condition increased gradually, indicating a positive correlation between the downregulation of these 4 receptor subunits and schizophrenia (P < 0.05). However, the expression levels of GABRA5 (α5 subunit gene) and GABRA6 (α6 subunit gene) showed no significant correlation with schizophrenia (P > 0.05). CONCLUSION: Downregulation of the GABA receptor subunits is positively correlated with schizophrenia. In other words, when GABA receptor subunits are downregulated in patients, cognitive impairment becomes more severe.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38698745

RESUMO

INTRODUCTION: At present, cyclosporine (CsA) is the first-line treatment for Pure Red Cell Aplasia (PRCA), but CsA administration can be associated with a number of side effects due to its high toxicity. Therefore, it is urgent to explore a safe and effective treatment for elderly patients who cannot be treated with conventional doses of CsA, especially those with multiple complications. Allogeneic Stem Cell Transplantation (ASCT) for PRCA is a promising treatment, but reports of using umbilical cord blood (UCB) are very rare. CASE PRESENTATION: In this report, UCB and umbilical cord mesenchymal stem cells (UC-MSCs) combined with low-dose CsA (1-3mg/kg/d) were used to treat 3 elderly patients who were diagnosed with PRCA combined with multiple complications in heart, lung, and renal. The treatments were successful without complications, and 12 months after stem cell infusion, the blood tests of the patients came normal. Moreover, the function of the liver, heart, and kidney continued to be stable. CONCLUSION: This report provides an effective regimen of using UCB and UC-MSCs combined with low-dose CsA (1-3 mg/kg/d) to treat PRCA, especially for elderly patients with multiple complications who cannot use the conventional dosage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA