Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Treat Options Oncol ; 22(6): 54, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34086150

RESUMO

OPINION STATEMENT: The rise in the incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPC), the relatively young age at which it is diagnosed, and its favorable prognosis necessitate the use of treatment techniques that reduce the likelihood of side effects during and after curative treatment. Intensity-modulated proton therapy (IMPT) is a form of radiotherapy that de-intensifies treatment through dose de-escalation to normal tissues without compromising dose to the primary tumor and involved, regional lymph nodes. Preclinical studies have demonstrated that HPV-positive squamous cell carcinoma is more sensitive to proton radiation than is HPV-negative squamous cell carcinoma. Retrospective studies comparing intensity-modulated photon (X-ray) radiotherapy to IMPT for OPC suggest comparable rates of disease control and lower rates of pain, xerostomia, dysphagia, dysgeusia, gastrostomy tube dependence, and osteoradionecrosis with IMPT-all of which meaningfully affect the quality of life of patients treated for HPV-associated OPC. Two phase III trials currently underway-the "Randomized Trial of IMPT versus IMRT for the Treatment of Oropharyngeal Cancer of the Head and Neck" and the "TOxicity Reduction using Proton bEam therapy for Oropharyngeal cancer (TORPEdO)" trial-are expected to provide prospective, level I evidence regarding the effectiveness of IMPT for such patients.


Assuntos
Alphapapillomavirus , Neoplasias Orofaríngeas/radioterapia , Infecções por Papillomavirus/complicações , Terapia com Prótons/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Humanos , Neoplasias Orofaríngeas/virologia , Terapia com Prótons/efeitos adversos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Ensaios Clínicos Controlados Aleatórios como Assunto , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
2.
Radiother Oncol ; 193: 110121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311031

RESUMO

INTRODUCTION: Adjuvant immunotherapy (IO) following concurrent chemotherapy and photon radiation therapy confers an overall survival (OS) benefit for patients with inoperable locally advanced non-small cell lung carcinoma (LA-NSCLC); however, outcomes of adjuvant IO after concurrent chemotherapy with proton beam therapy (CPBT) are unknown. We investigated OS and toxicity after CPBT with adjuvant IO versus CPBT alone for inoperable LA-NSCLC. MATERIALS AND METHODS: We analyzed 354 patients with LA-NSCLC who were prospectively treated with CPBT with or without adjuvant IO from 2009 to 2021. Optimal variable ratio propensity score matching (PSM) matched CPBT with CPBT + IO patients. Survival was estimated with the Kaplan-Meier method and compared with log-rank tests. Multivariable Cox proportional hazards regression evaluated the effect of IO on disease outcomes. RESULTS: Median age was 70 years; 71 (20%) received CPBT + IO and 283 (80%) received CPBT only. After PSM, 71 CPBT patients were matched with 71 CPBT + IO patients. Three-year survival rates for CPBT + IO vs CPBT were: OS 67% vs 30% (P < 0.001) and PFS 59% vs 35% (P = 0.017). Three-year LRFS (P = 0.137) and DMFS (P = 0.086) did not differ. Receipt of adjuvant IO was a strong predictor of OS (HR 0.40, P = 0.001) and PFS (HR 0.56, P = 0.030), but not LRFS (HR 0.61, P = 0.121) or DMFS (HR 0.61, P = 0.136). There was an increased incidence of grade ≥3 esophagitis in the CPBT-only group (6% CPBT + IO vs 17% CPBT, P = 0.037). CONCLUSION: This study, one of the first to investigate CPBT followed by IO for inoperable LA-NSCLC, showed that IO conferred survival benefits with no increased rates of toxicity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Humanos , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Terapia com Prótons/efeitos adversos , Quimioterapia Adjuvante , Neoplasias Pulmonares/patologia , Imunoterapia/efeitos adversos , Estudos Retrospectivos
3.
Phys Med Biol ; 68(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040785

RESUMO

Objective. Robustness evaluation is critical in particle radiotherapy due to its susceptibility to uncertainties. However, the customary method for robustness evaluation only considers a few uncertainty scenarios, which are insufficient to provide a consistent statistical interpretation. We propose an artificial intelligence-based approach that overcomes this limitation by predicting a set of percentile dose values at every voxel and allows for the evaluation of planning objectives at specific confidence levels.Approach. We built and trained a deep learning (DL) model to predict the 5th and 95th percentile dose distributions, which corresponds to the lower and upper bounds of a two-tailed 90% confidence interval (CI), respectively. Predictions were made directly from the nominal dose distribution and planning computed tomography scan. The data used to train and test the model consisted of proton plans from 543 prostate cancer patients. The ground truth percentile values were estimated for each patient using 600 dose recalculations representing randomly sampled uncertainty scenarios. For comparison, we also tested whether a common worst-case scenario (WCS) robustness evaluation (voxel-wise minimum and maximum) corresponding to a 90% CI could reproduce the ground truth 5th and 95th percentile doses.Main results. The percentile dose distributions predicted by DL yielded excellent agreements with the ground truth dose distributions, with mean dose errors below 0.15 Gy and average gamma passing rates (GPR) at 1 mm/1% above 93.9, which were substantially better than the WCS dose distributions (mean dose error above 2.2 Gy and GPR at 1 mm/1% below 54). We observed similar outcomes in a dose-volume histogram error analysis, where the DL predictions generally yielded smaller mean errors and standard deviations than the WCS evaluation doses.Significance. The proposed method produces accurate and fast predictions (∼2.5 s for one percentile dose distribution) for a given confidence level. Thus, the method has the potential to improve robustness evaluation.


Assuntos
Aprendizado Profundo , Terapia com Prótons , Radioterapia de Intensidade Modulada , Masculino , Humanos , Terapia com Prótons/métodos , Inteligência Artificial , Estudos de Viabilidade , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
4.
J Radiosurg SBRT ; 9(1): 75-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029015

RESUMO

Our randomized clinical study comparing stereotactic body radiotherapy (SBRT) and stereotactic body proton therapy (SBPT) for early stage non-small cell lung cancer (NSCLC) was closed prematurely owing to poor enrollment, largely because of lack of volumetric imaging and difficulty in obtaining insurance coverage for the SBPT group. In this article, we describe technology improvements in our new proton therapy center, particularly in image guidance with cone beam CT (CBCT) and CT on rail (CTOR), as well as motion management with real-time gated proton therapy (RGPT) and optical surface imaging. In addition, we have a treatment planning system that provides better treatment plan optimization and more accurate dose calculation. We expect to re-start the SBPT program, including for early stage NSCLC as well as for other disease sites soon after starting patient treatment at our new proton therapy center.

5.
Med Phys ; 39(12): 7359-67, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23231285

RESUMO

PURPOSE: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. METHODS: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a "pulsed beam"; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a "continuous beam." A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. RESULTS: The numerical simulations confirmed that the number of deliveries for each phase converges to K∕N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and∕or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. CONCLUSIONS: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference between the dynamic dose and 4D dose as a function of number of deliveries and∕or total deliver time was also established.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia Guiada por Imagem/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Med Phys ; 39(2): 891-900, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22320798

RESUMO

PURPOSE: Planar integral spot dose (PISD) of proton pencil beam spots (PPBSs) is a required input parameter for beam modeling in some treatment planning systems used in proton therapy clinics. The measurement of PISD by using commercially available large area ionization chambers, like the PTW Bragg peak chamber (BPC), can have large uncertainties due to the size limitation of these chambers. This paper reports the results of our study of a novel method to determine PISD values from the measured lateral dose profiles and peak dose of the PPBS. METHODS: The PISDs of 72.5, 89.6, 146.9, 181.1, and 221.8 MeV energy PPBSs were determined by area integration of their planar dose distributions at different depths in water. The lateral relative dose profiles of the PPBSs at selected depths were measured by using small volume ion chambers and were investigated for their angular anisotropies using Kodak XV films. The peak spot dose along the beam's central axis (D(0)) was determined by placing a small volume ion chamber at the center of a broad field created by the superposition of spots at different locations. This method allows eliminating positioning uncertainties and the detector size effect that could occur when measuring it in single PPBS. The PISD was then calculated by integrating the measured lateral relative dose profiles for two different upper limits of integration and then multiplying it with corresponding D(0). The first limit of integration was set to radius of the BPC, namely 4.08 cm, giving PISD(RBPC). The second limit was set to a value of the radial distance where the profile dose falls below 0.1% of the peak giving the PISD(full). The calculated values of PISD(RBPC) obtained from area integration method were compared with the BPC measured values. Long tail dose correction factors (LTDCFs) were determined from the ratio of PISD(full)∕PISD(RBPC) at different depths for PPBSs of different energies. RESULTS: The spot profiles were found to have angular anisotropy. This anisotropy in PPBS dose distribution could be accounted in a reasonable approximate manner by taking the average of PISD values obtained using the in-line and cross-line profiles. The PISD(RBPC) values fall within 3.5% of those measured by BPC. Due to inherent dosimetry challenges associated with PPBS dosimetry, which can lead to large experimental uncertainties, such an agreement is considered to be satisfactory for validation purposes. The PISD(full) values show differences ranging from 1 to 11% from BPC measured values, which are mainly due to the size limitation of the BPC to account for the dose in the long tail regions of the spots extending beyond its 4.08 cm radius. The dose in long tail regions occur both for high energy beams such as 221.8 MeV PPBS due to the contributions of nuclear interactions products in the medium, and for low energy PPBS because of their larger spot sizes. The calculated LTDCF values agree within 1% with those determined by the Monte Carlo (MC) simulations. CONCLUSIONS: The area integration method to compute the PISD from PPBS lateral dose profiles is found to be useful both to determine the correction factors for the values measured by the BPC and to validate the results from MC simulations.


Assuntos
Algoritmos , Prótons , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Phys Med Biol ; 67(16)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35853442

RESUMO

Objective. Irradiation with ultra-high dose rates (>40 Gy s-1), also known as FLASH irradiation, has the potential to shift the paradigm of radiation therapy because of its reduced toxicity to normal tissues compared to that of conventional irradiations. The goal of this study was to (1) achieve FLASH irradiation conditions suitable for pre-clinicalin vitroandin vivobiology experiments using our synchrotron-based proton beamline and (2) commission the FLASH irradiation conditions achieved.Approach. To achieve these suitable FLASH conditions, we made a series of adaptations to our proton beamline, including modifying the spill length and size of accelerating cycles, repurposing the reference monitor for dose control, and expanding the field size with a custom double-scattering system. We performed the dosimetric commissioning with measurements using an Advanced Markus chamber and EBT-XD films as well as with Monte Carlo simulations.Main results. Through adaptations, we have successfully achieved FLASH irradiation conditions, with an average dose rate of up to 375 Gy s-1. The Advanced Markus chamber was shown to be appropriate for absolute dose calibration under our FLASH conditions with a recombination factor ranging from 1.002 to 1.006 because of the continuous nature of our synchrotron-based proton delivery within a spill. Additionally, the absolute dose measured using the Advanced Markus chamber and EBT-XD films agreed well, with average and maximum differences of 0.32% and 1.63%, respectively. We also performed a comprehensive temporal analysis for FLASH spills produced by our system, which helped us identify a unique relationship between the average dose rate and the dose in our FLASH irradiation.Significance.We have established a synchrotron-based proton FLASH irradiation platform with accurate and precise dosimetry that is suitable for pre-clinical biology experiments. The unique time structure of the FLASH irradiation produced by our synchrotron-based system may shed new light onto the mechanism behind the FLASH effect.


Assuntos
Terapia com Prótons , Prótons , Terapia com Prótons/métodos , Radiometria , Dosagem Radioterapêutica , Síncrotrons
8.
Med Phys ; 38(7): 4329-37, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21859034

RESUMO

PURPOSE: To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. METHODS: The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. RESULTS: The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 +/- 35 patients. CONCLUSIONS: This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use factor of beam delivery parameters varies by disease site. Further improvements in efficiency may be realized in the equipment- and patient-related processes of treatment.


Assuntos
Neoplasias/epidemiologia , Neoplasias/radioterapia , Radioterapia de Alta Energia/estatística & dados numéricos , Estudos de Tempo e Movimento , Humanos , Terapia com Prótons , Texas
9.
Med Phys ; 38(12): 6730-41, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22149855

RESUMO

PURPOSE: The purpose of this work was to clarify the interactions between the parameters used in the γ index with the surface-based distance method, which itself can be viewed as a generalized version of the γ index. The examined parameters included the distance to agreement (DTA)/dose difference (DD) criteria, the percentage used as a passing criterion, and the passing percentage for given DTA/DD criteria. The specific aims of our work were (1) to understand the relationships between the parameters used in the γ index, (2) to determine the detection limit, or the minimum detectable error, of the γ index with a given set of parameters, and (3) to establish a procedure to determine parameters that are consistent with the capacity of an IMRT QA system. METHODS: The surface-based distance technique with dose gradient factor was derived, and then the relationship between surface-based distance and γ index was established. The dose gradient factor for plans and measurements of 10 IMRT patients, 10 spine stereotactic radiosurgery (SRS) patients, and 3 Radiological Physics Center (RPC) head and neck phantom were calculated and evaluated. The detection limits of the surface-based distance and γ index methods were examined by introducing known shifts to the 10 IMRT plans. RESULTS: The means of the dose gradient factors were 0.434 mm/% and 0.956 mm/% for the SRS and IMRT plans, respectively. Key quantities (including the mean and 90th and 99th percentiles of the distance distribution) of the surface-based distance distribution between two dose distributions were linearly proportional to the actual shifts. However, the passing percentage of the γ index for a given set of DTA/DD criteria was not associated with the actual shift. For IMRT, using the standard quality assurance criteria of 3 mm/3% DTA/DD and a 90% passing rate, we found that the detection limit of the γ index in terms of global shift was 4.07 mm/4.07 % without noise. CONCLUSIONS: Surface-based distance is a direct measure of the difference between two dose distributions and can be used to evaluate or determine parameters for use in calculating the γ index. The dose gradient factor represents the weighting between spatial and dose shift and should be determined before DTA/DD criteria are set. The authors also present a procedure to determine γ index parameters from measurements.


Assuntos
Algoritmos , Raios gama , Radiometria/métodos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Radiother Oncol ; 160: 32-39, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839202

RESUMO

BACKGROUND AND PURPOSE: To determine rates of xerostomia after intensity-modulated radiotherapy (IMRT) or intensity-modulated proton therapy (IMPT) for oropharyngeal cancer (OPC) and identify dosimetric factors associated with xerostomia risk. MATERIALS AND METHODS: Patients with OPC who received IMRT (n = 429) or IMPT (n = 103) from January 2011 through June 2015 at a single institution were studied retrospectively. Every 3 months after treatment, each patient completed an eight-item self-reported xerostomia-specific questionnaire (XQ; summary XQ score, 0-100). An XQ score of 50 was selected as the demarcation value for moderate-severe (XQs ≥ 50) and no-mild (XQs < 50) xerostomia. The mean doses and percent volumes of organs at risk receiving various doses (V5-V70) were extracted from the initial treatment plans. The dosimetric variables and xerostomia risk were compared using an independent-sample t-test or chi-square test. RESULTS: The median follow-up time was 36.2 months. The proportions of patients with moderate-severe xerostomia were similar in the two treatment groups up to 18 months after treatment. However, moderate-severe xerostomia was less common in the IMPT group than in the IMRT group at 18-24 months (6% vs. 20%; p = 0.025) and 24-36 months (6% vs. 20%; p = 0.01). During the late xerostomia period (24-36 months), high dose/volume exposures (V25-V70) in the oral cavity were associated with high proportions of patients with moderate-severe xerostomia (all p < 0.05), but dosimetric variables regarding the salivary glands were not associated with late xerostomia. CONCLUSION: IMPT was associated with less late xerostomia than was IMRT in OPC patients. Oral cavity dosimetric variables were related to the occurrence of late xerostomia.


Assuntos
Neoplasias Orofaríngeas , Terapia com Prótons , Radioterapia de Intensidade Modulada , Xerostomia , Humanos , Neoplasias Orofaríngeas/radioterapia , Terapia com Prótons/efeitos adversos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos , Estudos Retrospectivos , Xerostomia/epidemiologia , Xerostomia/etiologia , Xerostomia/prevenção & controle
11.
Med Phys ; 48(6): e86-e114, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33780010

RESUMO

With the advancement of data-intensive technologies, such as image-guided radiation therapy (IGRT) and intensity-modulated radiation therapy (IMRT), the amount and complexity of data to be transferred between clinical subsystems have increased beyond the reach of manual checking. As a result, unintended treatment deviations (e.g., dose errors) may occur if the treatment system is not closely monitored by a comprehensive data transfer quality management program (QM). This report summarizes the findings and recommendations from the task group (TG) on quality assurance (QA) of external beam treatment data transfer (TG-201), with the aim to assist medical physicists in designing their own data transfer QM. As a background, a section of this report describes various models of data flow (distributed data repositories and single data base systems) and general data test characteristics (data integrity, interpretation, and consistency). Recommended tests are suggested based on the collective experience of TG-201 members. These tests are for the acceptance of, commissioning of, and upgrades to subsystems that store and/or modify clinical treatment data. As treatment complexity continues to evolve, we will need to do and know more about ensuring the quality of data transfers. The report concludes with the recommendation to move toward data transfer open standards compatibility and to develop tools that automate data transfer QA.


Assuntos
Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Relatório de Pesquisa , Estados Unidos
12.
Med Phys ; 48(1): e1-e30, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33078858

RESUMO

Proton therapy is an expanding radiotherapy modality in the United States and worldwide. With the number of proton therapy centers treating patients increasing, so does the need for consistent, high-quality clinical commissioning practices. Clinical commissioning encompasses the entire proton therapy system's multiple components, including the treatment delivery system, the patient positioning system, and the image-guided radiotherapy components. Also included in the commissioning process are the x-ray computed tomography scanner calibration for proton stopping power, the radiotherapy treatment planning system, and corresponding portions of the treatment management system. This commissioning report focuses exclusively on intensity-modulated scanning systems, presenting details of how to perform the commissioning of the proton therapy and ancillary systems, including the required proton beam measurements, treatment planning system dose modeling, and the equipment needed.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Calibragem , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
13.
J Thorac Oncol ; 16(2): 269-277, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33198942

RESUMO

OBJECTIVE: Although intensity-modulated radiation therapy (IMPT) is dosimetrically superior to passive scattering proton therapy (PSPT) for locally advanced NSCLC (LA-NSCLC), direct comparisons of clinical outcomes are lacking. Here, we compare toxicity profiles and clinical outcomes after IMPT versus PSPT for LA-NSCLC. METHODS: This is a nonrandomized, comparative study of two independent cohorts with LA-NSCLC (stage II-IIIB, stage IV with solitary brain metastasis) treated with concurrent chemotherapy and proton beam therapy. Toxicity (Common Terminology Criteria for Adverse Events version 4.0) and outcomes were prospectively collected as part of a clinical trial (ClinicalTrials.gov identifier NCT00915005) or prospective registry (ClinicalTrials.gov identifier NCT00991094). RESULTS: Of 139 patients, 86 (62%) received PSPT and 53 (38%) IMPT; median follow-up times were 23.9 and 29.0 months, respectively. IMPT delivered lower mean radiation doses to the lungs (PSPT 16.0 Gy versus IMPT 13.0 Gy, p < 0.001), heart (10.7 Gy versus 6.6 Gy, p = 0.004), and esophagus (27.4 Gy versus 21.8 Gy, p = 0.005). Consequently, the IMPT cohort had lower rates of grade 3 or higher pulmonary (17% versus 2%, p = 0.005) and cardiac (11% versus 0%, p = 0.01) toxicities. Six patients (7%) with PSPT and zero patients (0%) with IMPT experienced grade 4 or 5 toxicity. Lower rates of pulmonary (28% versus 3%, p = 0.006) and cardiac (14% versus 0%, p = 0.05) toxicities were observed in the IMPT cohort even after propensity score matching for baseline imbalances. There was also a trend toward longer median overall survival in the IMPT group (23.9 mo versus 36.2 mo, p = 0.09). No difference was found in the 3-year rates of local (25% versus 20%, p = 0.44), local-regional (29% versus 36%, p = 0.56) and distant (52% versus 51%, p = 0.71) recurrences. CONCLUSIONS: IMPT is associated with lower radiation doses to the lung, heart, and esophagus, and lower rates of grade 3 or higher cardiopulmonary toxicity; additional clinical studies will be needed to assess the potential differences in survival between the two techniques.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Radioterapia de Intensidade Modulada , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Recidiva Local de Neoplasia , Terapia com Prótons/efeitos adversos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/efeitos adversos
14.
Med Phys ; 37(1): 154-63, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20175477

RESUMO

PURPOSE: To describe a summary of the clinical commissioning of the discrete spot scanning proton beam at the Proton Therapy Center, Houston (PTC-H). METHODS: Discrete spot scanning system is composed of a delivery system (Hitachi ProBeat), an electronic medical record (Mosaiq V 1.5), and a treatment planning system (TPS) (Eclipse V 8.1). Discrete proton pencil beams (spots) are used to deposit dose spot by spot and layer by layer for the proton distal ranges spanning from 4.0 to 30.6 g/cm2 and over a maximum scan area at the isocenter of 30 x 30 cm2. An arbitrarily chosen reference calibration condition has been selected to define the monitor units (MUs). Using radiochromic film and ion chambers, the authors have measured spot positions, the spot sizes in air, depth dose curves, and profiles for proton beams with various energies in water, and studied the linearity of the dose monitors. In addition to dosimetric measurements and TPS modeling, significant efforts were spent in testing information flow and recovery of the delivery system from treatment interruptions. RESULTS: The main dose monitors have been adjusted such that a specific amount of charge is collected in the monitor chamber corresponding to a single MU, following the IAEA TRS 398 protocol under a specific reference condition. The dose monitor calibration method is based on the absolute dose per MU, which is equivalent to the absolute dose per particle, the approach used by other scanning beam institutions. The full width at half maximum for the spot size in air varies from approximately 1.2 cm for 221.8 MeV to 3.4 cm for 72.5 MeV. The measured versus requested 90% depth dose in water agrees to within 1 mm over ranges of 4.0-30.6 cm. The beam delivery interlocks perform as expected, guarantying the safe and accurate delivery of the planned dose. CONCLUSIONS: The dosimetric parameters of the discrete spot scanning proton beam have been measured as part of the clinical commissioning program, and the machine is found to function in a safe manner, making it suitable for patient treatment.


Assuntos
Aceleradores de Partículas/instrumentação , Terapia com Prótons , Radioterapia Conformacional/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Dosagem Radioterapêutica , Integração de Sistemas , Texas
15.
J Appl Clin Med Phys ; 12(1): 3479, 2010 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-21330992

RESUMO

The transfer of radiation therapy data among the various subsystems required for external beam treatments is subject to error. Hence, the establishment and management of a data transfer quality assurance program is strongly recommended. It should cover the QA of data transfers of patient specific treatments, imaging data, manually handled data and historical treatment records. QA of the database state (logical consistency and information integrity) is also addressed to ensure that accurate data are transferred.


Assuntos
Bases de Dados Factuais , Radioterapia (Especialidade)/métodos , Radioterapia/métodos , Relatório de Pesquisa , Humanos , Imagens de Fantasmas , Controle de Qualidade , Radioterapia (Especialidade)/normas , Radioterapia/normas , Dosagem Radioterapêutica
16.
Adv Radiat Oncol ; 5(6): 1255-1266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33305086

RESUMO

PURPOSE: Intensity modulated radiation therapy delivered with deep-inspiration breath hold (IMRT-BH) provides favorable normal tissue dosimetric profiles when treating patients with mediastinal lymphoma. However, it is unclear if IMRT-BH plans are comparable to free breathing (FB) proton plans. We performed a retrospective, comparative dosimetric study between IMRT-BH and FB passive scatter proton therapy (P-FB) or intensity modulated proton therapy (IMPT-FB). Hypothesizing that BH would provide superior normal tissue sparing when added to proton therapy, we also compared plans to passive scatter BH (P-BH). METHODS AND MATERIALS: For 15 patients who received involved-site RT with "butterfly" IMRT-BH, 3 additional proton plans (P-FB, IMPT-FB, P-BH) were optimized to deliver 30.6 Gy/Gy relative biological effectiveness. Dosimetric variables (mean dose, V30, V25, V15, and V5) for organs at risk (OARs) were calculated and compared using nonparametric Wilcoxon signed-rank tests. RESULTS: Of 57 studied OAR parameters, IMRT-BH plans were comparable in 37 (65%) parameters with P-FB plans, 32 (56%) of IMPT-FB parameters, and 30 (53%) of P-BH parameters. Doses to breasts were generally equivalent among plans while esophageal dosing was worse with IMRT-BH. Mean doses and V5 of the total lung and heart were the highest with IMRT-BH; however, IMRT-BH resulted in comparable coronary and superior lung V30 relative to proton plans. The addition of BH with proton therapy resulted in the greatest lung sparing, with mean lung dose reductions of 11% to 38%. CONCLUSIONS: The use of BH with IMRT reduces the disparity in OAR doses with equivalence achieved in nearly two-thirds of OAR metrics compared with P-FB and 50% compared with IMPT-BH. Because each modality exhibited unique benefits, personalization of modality selection is recommended. Proton therapy via BH provides additional benefits in heart and lung sparing.

17.
Radiother Oncol ; 146: 200-204, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32220701

RESUMO

PURPOSE: To develop and test an Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model to predict radiation-induced esophagitis (RE) in non-small cell lung cancer (NSCLC) patients receiving passive-scattering proton therapy (PSPT). MATERIAL AND METHODS: We retrospectively reviewed 328 NSCLC patients receiving PSPT at our institution. Esophagitis severity was graded by physicians according to the Common Toxicity Criteria for Adverse Events version 3.0, and the primary endpoint was grade ≥2 RE within 6 months from the first treatment. LKB model parameters (n, m, and TD50) were determined using maximum likelihood estimation. Overall performance of the model was quantified by Nagelkerke's R2 and the scaled Brier score. Discriminative ability was evaluated using the area under the receiver operating curve (AUC), and calibration was assessed with the Hosmer-Lemeshow goodness-of-fit test. Bootstrap internal validation was performed to assess the model uncertainty and generalizability. RESULTS: Grade 2-3 RE was observed in 136 (41.5%) patients, and no grade 4-5 RE was reported. The optimal LKB parameters were: n = 0.24, m = 0.51, and TD50 = 44.83 Gy (relative biological effectiveness). The optimism-corrected AUC was 0.783, and the Hosmer-Lemeshow test showed significant agreement between predicted and observed morbidity. Bootstrap validation verified that the model was robust to similar future populations. CONCLUSION: Our LKB NTCP model to predict grade ≥2 RE in NSCLC patients who received PSPT showed good predictive performance and robustness to similar future populations, and a smaller volume effect than the previously observed in photon-treated populations. External validation of the model is warranted.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Esofagite , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Esofagite/etiologia , Humanos , Neoplasias Pulmonares/radioterapia , Probabilidade , Prótons , Dosagem Radioterapêutica , Estudos Retrospectivos
18.
Radiother Oncol ; 142: 124-132, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31564553

RESUMO

PURPOSE: We aimed to determine whether multiple-CT (MCT) optimization of intensity-modulated proton therapy (IMPT) could improve plan robustness to anatomical changes and therefore reduce the additional need for adaptive planning. METHODS AND MATERIALS: Ten patients with head and neck cancer who underwent IMPT were included in this retrospective study. Each patient had primary planning CT (PCT), a first adaptive planning CT (ACT1), and a second adaptive planning CT (ACT2). Selective robust IMPT plans were generated using each CT data set (PCT, ACT1, and ACT2). Moreover, a MCT optimized plan was generated using the PCT and ACT1 data sets together. Dose distributions optimized using each of the four plans (PCT, ACT1, ACT2, and MCT plans) were re-calculated on ACT2 data. The doses to the target and to organs at risk were compared between optimization strategies. RESULTS: MCT plans for all patients met all target dose and organs-at-risk criteria for all three CT data sets. Target dose and organs-at-risk dose for PCT and ACT1 plans re-calculated on ACT2 data set were compromised, indicating the need for adaptive planning on ACT2 if PCT or ACT1 plans were used. The D98% of CTV1 and CTV3 of MCT plan re-calculated on ACT2 were both above the coverage criteria. The CTV2 coverage of the MCT plan re-calculated on ACT2 was worse than ACT2 plan. The MCT plan re-calculated on ACT2 data set had lower chiasm, esophagus, and larynx doses than did PCT, ACT1, or ACT2 plans re-calculated on ACT2 data set. CONCLUSIONS: MCT optimization can improve plan robustness toward anatomical change and may reduce the number of plan adaptation for head and neck cancers.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Adolescente , Adulto , Algoritmos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Órgãos em Risco/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Adulto Jovem
19.
Phys Imaging Radiat Oncol ; 13: 44-49, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32551371

RESUMO

BACKGROUND AND PURPOSE: Computed tomography (CT) scanning is the basis for radiation treatment planning, but the 50-cm standard scanning field of view (sFOV) may be too small for imaging larger patients. We evaluated the 65-cm high-definition (HD) FOV of a large-bore CT scanner for CT number accuracy, geometric distortion, image quality degradation, and dosimetric accuracy of photon treatment plans. MATERIALS AND METHODS: CT number accuracy was tested by placing two 16-cm acrylic phantoms on either side of a 40-cm phantom to simulate a large patient extending beyond the 50-cm-diameter standard scanning FOV. Dosimetric accuracy was tested using anthropomorphic pelvis and thorax phantoms, with additional acrylic body parts on either side of the phantoms. Two volumetric modulated arc therapy beams (a 15-MV and a 6-MV) were used to cover the planning target volumes. Two-dimensional dose distributions were evaluated with GAFChromic film and point dose accuracy was checked with multiple thermoluminescent dosimeter (TLD) capsules placed in the phantoms. Image quality was tested by placing an American College of Radiology accreditation phantom inside the 40-cm phantom. RESULTS: The HD FOV showed substantial changes in CT numbers, with differences of 314 HU-725 HU at different density levels. The volume of the body parts extending into the HD FOV was distorted. However, TLD-reported doses for all PTVs agreed within ± 3%. Dose agreement in organs at risk were within the passing criteria, and the gamma index pass rate was >97%. Image quality was degraded. CONCLUSIONS: The HD FOV option is adequate for RT simulation and met accreditation standards, although care should be taken during contouring because of reduced image quality.

20.
Head Neck ; 42(9): 2244-2256, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32323895

RESUMO

BACKGROUND: Combining photon or proton radiotherapy with targeted therapy shows promise for head and neck cancer (HNSCC). The poly (adenosine diphosphate [ADP]-ribose) polymerase-1/2 inhibitor niraparib targets DNA damage repair (DDR). We evaluated the effects of niraparib in combination with photons or protons, and its effects on the relative biological effectiveness (RBE) of protons, in human HNSCC cell lines. METHODS: Radiosensitivity was assessed and RBE was calculated with clonogenic survival assays; unrepaired DNA double-strand breaks were evaluated using immunocytochemical analysis of 53BP1 foci. RESULTS: Niraparib reduced colony formation in two of the four cell lines tested (P < .05), enhanced radiosensitivity in all four cell lines, delayed DDR (P < .05), and increased proton vs photon RBE. CONCLUSION: Niraparib enhanced the sensitivity of four HNSCC cell lines to both photons and protons and increased the RBE of protons, possibly by inhibiting DDR. Niraparib may enhance the effectiveness of both photon and proton radiotherapy for patients with HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Indazóis , Piperidinas , Inibidores de Poli(ADP-Ribose) Polimerases , Radiossensibilizantes , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Indazóis/farmacologia , Fótons , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Prótons , Radiossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA