Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Opt Express ; 32(2): 1715-1727, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297717

RESUMO

Bandwidth limitation in optoelectrical components and the chromatic dispersion-induced power fading phenomenon cause severe inter-symbol interference (ISI) in high-speed intensity modulation and direct detection (IM-DD) optical interconnects. While the equalizer implemented in the receiver's digital signal processing procedure can mitigate ISI, it also inevitably enhances the noise located in the decayed frequency region, known as equalization-enhanced colored noise (EECN). Additionally, the nonlinear impairments of the modulator and photodetector also deteriorate the performance of the IM-DD system, especially for high-order modulation formats. In this work, we propose a gradient-descent noise whitening (GD-NW) algorithm to address EECN and extend it by introducing nonlinear kernels to simultaneously mitigate EECN and nonlinear impairments. The proposed algorithms are compared with conventional counterparts in terms of the achievable baud rate and the receiver optical power sensitivity. As a proof-of-concept experiment, we validate the principles of the proposed algorithms by successfully transmitting 360-GBd on-off-keying (OOK) and 180-GBd 4-level pulse-amplitude-modulation (PAM-4) signals in the back-to-back case under a 62-GHz brick-wall bandwidth limitation. 280-GBd OOK and 150-GBd PAM-4 transmissions are also demonstrated over 1-km standard single-mode fiber with a bit error rate below 7% hard-decision forward error correction aided by the proposed approach.

2.
Opt Lett ; 49(5): 1353-1356, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427011

RESUMO

Broadband amplified spontaneous emission (ASE) light sources are recognized for their cost-effective generation. However, their inherent high-intensity noise and the stringent requirement for time delay matching limits their widespread application in coherent optical telecommunication. Here we propose a broadband ASE source-enabled digital-analog radio-over-fiber (DA-RoF) mobile fronthaul architecture, leveraging semiconductor optical amplifiers (SOAs) and multicore fiber in tandem. Our proposed system uses SOAs to suppress the intensity noise of the ASE carrier and transmits the DA-RoF signal alongside an unmodulated carrier through distinct cores of an 8-core, 1-km fiber. This setup significantly enhances the signal-to-noise ratio (SNR) by 19.4 dB, boosts capacity, and enables self-homodyne detection at the receiver end. We achieve an aggregated bandwidth of 35 GHz (7 cores × 5 GHz), supporting a 2.05-Tb/s CPRI-equivalent data rate with 1024-ary quadrature-amplitude-modulated (1024-QAM) signals. Additionally, we analyze the impact of chromatic dispersion on signal-to-noise ratio for broadband source coherent detection systems. This innovative scheme offers a pragmatic solution for integrating low-cost broadband sources into cost-sensitive fronthaul systems, providing both high capacity and fidelity in massive deployment scenarios.

3.
J Environ Sci (China) ; 137: 195-205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37980008

RESUMO

Antimicrobial resistance in the laying hen production industry has become a serious public health problem. The antimicrobial resistance and phylogenetic relationships of the common conditional pathogen Enterococcus along the laying hen production chain have not been systematically clarified. 105 Enterococcus isolates were obtained from 115 environmental samples (air, dust, feces, flies, sewage, and soil) collected along the laying hen production chain (breeding chicken, chick, young chicken, and commercial laying hen). These Enterococcus isolates exhibited resistance to some clinically relevant antibiotics, such as tetracycline (92.4%), streptomycin (92.4%), and erythromycin (91.4%), and all strains had multidrug resistance phenotypes. Whole genome sequencing characterized 29 acquired antibiotic resistance genes (ARGs) that conferred resistance to 11 classes of antibiotics in 51 pleuromutilin-resistant Enterococcus isolates, and lsa(E), which mediates resistance to pleuromutilins, always co-occurred with lnu(B). Alignments with the Mobile Genetic Elements database identified four transposons (Tn554, Tn558, Tn6261, and Tn6674) with several ARGs (erm(A), ant(9)-la, fex(A), and optrA) that mediated resistance to many clinically important antibiotics. Moreover, we identified two new transposons that carried ARGs in the Tn554 family designated as Tn7508 and Tn7492. A complementary approach based on conventional multi-locus sequence typing and whole genome single nucleotide polymorphism analysis showed that phylogenetically related pleuromutilin-resistant Enterococcus isolates were widely distributed in various environments on different production farms. Our results indicate that environmental contamination by antimicrobial-resistant Enterococcus requires greater attention, and they highlight the risk of pleuromutilin-resistant Enterococcus and ARGs disseminating along the laying hen production chain, thereby warranting effective disinfection.


Assuntos
Antibacterianos , Enterococcus , Animais , Feminino , Enterococcus/genética , Antibacterianos/farmacologia , Galinhas/genética , Filogenia , Tipagem de Sequências Multilocus , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Pleuromutilinas
4.
Opt Lett ; 48(7): 1706-1709, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221746

RESUMO

Digital pre-distortion (DPD) is a powerful technique to mitigate transmitter nonlinear distortion in optical transmissions. In this Letter, the identification of DPD coefficients based on the direct learning architecture (DLA) using the Gauss-Newton (GN) method is applied in optical communications for the first time. To the best of our knowledge, this is the first time that the DLA has been realized without training an auxiliary neural network to mitigate optical transmitter nonlinear distortion. We describe the principle of the DLA using the GN method and compare the DLA with the indirect learning architecture (ILA) that uses the least-square (LS) method. Extensive numerical and experimental results indicate that the GN-based DLA is superior to the LS-based ILA, especially in a low signal-to-noise ratio scenario.

5.
Opt Lett ; 48(23): 6152-6155, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039214

RESUMO

The digital-analog radio-over-fiber (DA-RoF) scheme offers a high-fidelity and spectrally efficient solution for future mobile fronthaul. However, to be implemented in the low-cost directly modulated laser with direct detection (DML-DD) link, both the digital and analog parts in DA-RoF modulation would suffer from the composite second-order (CSO) and composite triple beat (CTB) caused by the chirp-dispersion interaction. In this Letter, we propose and experimentally demonstrate a computationally efficient composite triple beat cancellation (CTB-C) algorithm for DA-RoF fronthaul in the dispersion-uncompensated C-band DML-DD link. The CSO and CTB are suppressed at the receiver-side DSP based on the theoretical model of these nonlinear distortions. In the proof-of-concept experiment, a 1.2-dB improvement in the recovered signal-to-noise ratio (SNR) is obtained with 5.5-GHz 1024-QAM orthogonal frequency division multiplexing (OFDM) signal after 10-km standard single-mode fiber (SSMF) transmission. The proposed CTB-C technique does not require the training process and performs close to the Volterra-based feed-forward equalizer (VFE) under the complexity constraint.

6.
Opt Lett ; 48(19): 4957-4960, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773359

RESUMO

Direct detection system is expected to possess the phase and polarization diversity in order to achieve high spectral efficiency and fiber impairment compensation such as chromatic dispersion and polarization rotation. In this Letter, we theoretically extend the concept of the proposed Jones-space field recovery (JSFR) to include a dynamic polarization rotation matrix and experimentally demonstrate the rapid polarization state tracking ability of the JSFR receiver based on a 3 × 3 optical coupler. Under a rotation of the state of polarization at a rate of 1 Mrad/s, we successfully transmit 59-GBd dual-polarization 16-ary quadrature-amplitude-modulation signals over an 80-km standard single-mode fiber based on a decision-directed least mean square (DD-LMS) or a recursive least square (DD-RLS), with a bit-error rate below the 14% hard-decision forward error correction threshold of 1 × 10-2. The experimental results indicate that the legacy polarization tracking algorithms designed for coherent optical communication are also applicable for this direct detection scheme. To our best knowledge, this work demonstrates the first polarization rotation-tolerant direct detection system with phase and polarization diversity, providing a low-cost and high-speed solution for short-reach communications.

7.
Opt Express ; 30(6): 9321-9335, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299363

RESUMO

Power-fading impairment induced by fiber dispersion and photodiode detection imposes a fundamental limitation on the intensity-modulation direct-detection (IM-DD) transmission systems. In this work, we propose a cost-effective pulse-amplitude modulation (PAM) signal transmission scheme with power-fading mitigation enabled by Alamouti coding and dual-drive Mach-Zehnder modulator (DDMZM). By interleaving the symbol blocks in the time domain for upper- and lower-arm of the DDMZM, flat end-to-end frequency response can be obtained without spectral nulls after combining the photocurrents at odd and even time slots. For single channel demonstration, we experimentally transmit up to 160Gb/s PAM-4, 140Gb/s PAM-6, and 108Gb/s PAM-8 signals over 80 km standard single-mode fiber (SSMF) with bit-error rates (BERs) below the 20% soft-decision forward error correction (SD-FEC) threshold of 2.0×10-2. For wavelength division multiplexing (WDM) transmission, 8λ×150Gb/s PAM-4 signals spacing at 100 GHz can also achieve 80 km reach. Moreover, we compare the optical signal-to-noise ratio (OSNR) sensitivity with single sideband (SSB) scheme and evaluate the tolerance of bias deviation in numerical simulation. The proposed Alamouti coding-based scheme provides a hardware-efficient and dispersion-tolerant candidate for high-speed inter-data center interconnect (DCI) applications.

8.
Opt Express ; 30(16): 29409-29420, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299116

RESUMO

We propose and experimentally demonstrate a coherent digital-analog radio-over-fiber (DA-RoF) system and achieve the transmission of Tb/s common public radio interface (CPRI)-equivalent data rate for fronthaul. The proposed coherent DA-RoF system includes DA-RoF modulation, demodulation and DA-RoF compatible coherent digital signal processing (DSP) blocks. A theoretical analysis of the DA-RoF scheme together with parameter optimization is accomplished as well. In the experiment, a 25 Gbaud DA-RoF signal with 1 Tb/s CPRI-equivalent data rate is transmitted in the system, satisfying the error vector magnitude (EVM) requirement for 256-quadrature amplitude modulation (QAM) signal transmission. With the symbol rate reduced to 10 Gbaud, an EVM below 2.5% is achieved, which meets the requirement for 1024-QAM transmission. The experimental results show that the coherent DA-RoF system is a promising solution for future fronthaul.

9.
Opt Lett ; 47(15): 3836-3839, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913327

RESUMO

Efficient signal-to-noise ratio (SNR) and spectral efficiency (SE) trade-off can offer fundamental guiding law for future large-capacity and high-fidelity mobile fronthaul. In this Letter, we propose and experimentally demonstrate a cascaded digital-analog radio-over-fiber (CDA-RoF) scheme, which transmits digitized and analog segments using time-division-multiplexing aggregation. Specifically, multiple digital parts generated by a rounding function describe the main features of the original waveform, while the residual error is magnified and delivered as analog RoF with SE advantage. Based on a 20-GHz O-band directly modulated laser (DML), an SNR enhancement of >10 dB is observed for each extra bandwidth. Up to 70.4-dB SNR is also achieved for a 3.5-GHz 1048576-ary quadrature amplitude modulation (1048576-QAM) signal after 20-km standard single-mode fiber (SSMF) transmission.

10.
Opt Lett ; 47(15): 3724-3727, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913299

RESUMO

Broadband electro-optic (EO) frequency combs, which have flexible and high repetition frequencies, are prospective light sources for dense-wavelength-division-multiplexed coherent optical communications. In most cases, nonlinear spectral broadening and amplification procedures are needed to achieve broadband and high-power EO frequency combs. This leads to a low optical carrier-to-noise ratio (OCNR) for comb lines, limiting the transmission capacity. Here, we propose to use an air-gap Fabry-Pérot (FP) cavity to improve the OCNR for all the comb lines covering a 30 nm broadband spectrum. A 12 dB OCNR (0.1 nm bandwidth) improvement is obtained experimentally via using an FP cavity with ∼790 MHz bandwidth. We apply a 150-channel filtered EO comb with 25 GHz channel spacing and load 20 GBaud signals on each comb line to demonstrate the effect of OCNR improvement. The 137/150 channels have a bit error rate below the threshold of soft-decision forward error correction when using the 128 quadrature amplitude modulation (QAM) format. However, none of these channels can support this modulation format without cavity filtering. We also investigate dispersion tolerance and the long-term stability when using an air-gap FP cavity, highlighting its advantages. Our results show a practical solution to boost the transmission capacity when applying broadband EO combs in optical communications.

11.
BMC Genomics ; 22(1): 577, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315409

RESUMO

BACKGROUND: miRNA is one of the crucial roles in the complex and dynamic network that regulates the development of skeletal muscle. The landscape of skeletal muscle miRNAs from fetus to adult in New Zealand rabbits has not been revealed yet. RESULTS: In this study, nine RNA-seq libraries of fetus, child and adult rabbits' leg muscles were constructed. A total of 278 differentially expressed miRNAs (DEmiRNAs) were identified. In the fetus vs. child group, the main functional enrichments were involved in membrane and transport. Pathway enriched terms of up-regulated DEmiRNAs were connected with the differentiation and hypertrophy of skeletal muscle, and down-regulated ones were related to muscle structure and metabolic capacity. In the child vs. adult group, functions were associated to positioning and transportation, and pathways were relevant to ECM, muscle structure and hypertrophy. Finally, ocu-miR-185-3p and ocu-miR-370-3p, which had the most target genes, were identified as hub-miRNAs in these two groups. CONCLUSIONS: In short, we summarized the highly expressed and uniquely expressed DEmiRNAs of fetus, child and adult rabbits' leg muscles. Besides, the potential functional changes of miRNAs in two consecutive stages have been explored. Among them, the ocu-miR-185-3p and ocu-miR-370-3p with the most target genes were selected as hub-miRNAs. These data improved the understanding of the regulatory molecules of meat rabbit development, and provided a novel perspective for molecular breeding of meat rabbits.


Assuntos
MicroRNAs , Animais , Perfilação da Expressão Gênica , MicroRNAs/genética , Desenvolvimento Muscular/genética , Músculo Esquelético , RNA-Seq , Coelhos
12.
Appl Microbiol Biotechnol ; 105(1): 313-325, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201274

RESUMO

Investigation of the compositional and functional characteristics of the gastrointestinal bacterial community in beef cattle breeds can improve our understanding of the influence of gastrointestinal tract (GIT) regions and host breeds on the bacterial community. In this study, 16S ribosomal RNA (16S rRNA) gene amplicon sequencing was used to characterize the bacterial communities in the rumen, duodenum, jejunum, ileum, caecum, and colon of Xuanhan yellow cattle (XHC) and Simmental crossbred cattle (SXC). The results showed that the diversity of the bacterial population was different in GIT regions of XHC and SXC (P < 0.05). In total, ten bacterial phyla, sixteen bacterial genera, and nine metabolic pathways were identified in the core bacteria. The phyla Firmicutes, Bacteroidetes, and Proteobacteria were predominant, but their proportions were different in GIT regions (P < 0.05). The diversity, structure, and composition of the bacteria in the rumen were similar between the breeds (P > 0.05), and the indices in the intestine showed significant differences (P < 0.05). Moreover, the composition and structure of the bacterial communities in the rumen, small intestine, and large intestine were different regardless of the breed. Thus, the bacterial communities were different among the gastrointestinal regions in each breed, and the bacterial community in the rumen had more stable characteristics than that in the intestine between two breeds. Further studies may focus on the minor microbial communities and the functions of GIT bacteria to better understand gut-microbe interactions. KEY POINTS: • Differences in bacteria among gastrointestinal regions differ in cattle breeds. • Differences between the breeds in the ruminal bacteria are less pronounced than differences in the intestinal bacteria.


Assuntos
Bactérias , Trato Gastrointestinal , Animais , Bactérias/genética , Bovinos , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rúmen
13.
Opt Express ; 28(13): 19008-19022, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672187

RESUMO

Low-cost, spectrally efficient self-coherent detection capable of optical field recovery is desired for inter-data center connections and metro networks. In this work, a simplified symmetric carrier assisted differential detection (S-CADD) receiver structure is proposed, which removes the single-ended photodiode branch and saves one ADC in standard asymmetric CADD (A-CADD) receivers. To compensate for the signal-signal beating (SSBI) impairment, a low-complexity iterative SSBI mitigation algorithm is put forward as well. The computational complexity is reduced by moving equalization, de-modulation and modulation out of each iteration. Based on single-carrier twin-single sideband (SSB) pulse- and quadrature-amplitude modulation (PAM and QAM) signals, the OSNR sensitivity with different carrier-to-signal power ratios (CSPRs) at back-to-back (BTB) scenario, the bit-error rates (BER) performance after 1000km fiber transmission, and the received optical power sensitivity at BTB are theoretically and numerically compared for both S-CADD and A-CADD receivers, respectively.

14.
Opt Lett ; 45(22): 6138-6141, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33186934

RESUMO

Fiber dispersion and square-law detection-induced power fading is a fundamental obstacle in intensity modulation with direct detection links. In this Letter, we propose a hardware-efficient vestigial sideband (VSB) transmitter to suppress such an impairment. By introducing an appropriate time skew between the differential arms of the Mach-Zehnder modulator, a VSB signal can be generated based on a single digital-to-analog convertor without optical filtering. At the receiver, a Volterra equalizer is utilized to mitigate the inter-symbol interference. In the proof-of-concept experiment, 32 Gbaud 4/6/8-ary pulse amplitude modulation signals can be successfully transmitted over an 80 km standard single-mode fiber with bit-error rates below the KP4, 7% hard-decision and 20% soft-decision forward error correction thresholds, respectively. The proposed scheme provides a promising and low-cost solution for high-speed metro and data center interconnect applications.

15.
Opt Express ; 27(17): 23654-23660, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510267

RESUMO

We design and fabricate a compact silicon photonic integrated circuit (PIC) for polarization diversity heterodyne coherent detection. This PIC integrates two optical gratings for fiber coupling and polarization diversity, two germanium single-ended photodetectors (PDs), and three multimode interferometers (MMIs) for power splitting and optical hybrid. The device is highly compact with a footprint of 0.68mm × 0.9mm. We test this PIC with heterodyne detection experiments of polarization division multiplexed (PDM) 32Gbaud quadrature phase shift keying (QPSK) and 16-ary quadrature amplitude modulation (16QAM) signals. The signal-signal beat interference due to square-law detection is separately mitigated with the Kramers-Kronig (KK) scheme for each of the two orthogonal polarizations. To our best knowledge, we report the first PDM-KK coherent receiver in PIC with a capability of detecting 256Gb/s 16QAM signals, which shows the most compact size among the silicon coherent receivers ever reported.

16.
Opt Express ; 26(12): 15887-15898, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114842

RESUMO

We propose a novel direct detection (DD) scheme for polarization division multiplexed (PDM) single sideband (SSB) signals with two orthogonal carriers located at the opposite sides. Polarization diversity is realized with a pair of optical filters that are used to suppress the unwanted orthogonal carrier component. A PDM-SSB DD receiver is thus constructed without polarization de-rotation. The intra-polarization signal-signal beat interference (SSBI) can be mitigated by Kramers-Kronig detection or iterative SSBI cancellation. For inter-polarization SSBI mitigation, we propose a joint iterative SSBI cancellation method. The proposed PDM-SSB DD scheme is validated with a principle experiment of 40Gbaud PDM-SSB 16-ary quadrature amplitude modulation (16-QAM) signals. After 80km standard single-mode fiber (SSMF) transmission, the bit-error rates (BERs) achieve 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10-2. The performance of iterative SSBI cancellation, Kramers-Kronig detection, and joint iterative SSBI cancellation are evaluated for PDM-SSB signals with different carrier-to-signal ratios (CSPRs) through numerical simulations. Moreover, a multi-input-multi-output (MIMO) equalization scheme is proposed and validated with numerical simulation, which can suppress the linear inter-polarization crosstalk and relax the sharpness requirement of optical filter edges.

17.
Opt Express ; 25(16): 19332-19342, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041127

RESUMO

We have designed and fabricated a silicon photonic in-phase-quadrature (IQ) modulator based on a nested dual-drive Mach-Zehnder structure incorporating electrical packaging. We have assessed its use for generating Nyquist-shaped single sideband (SSB) signals by operating it either as an IQ Mach-Zehnder modulator (IQ-MZM) or using just a single branch of the dual-drive Mach-Zehnder modulator (DD-MZM). The impact of electrical packaging on the modulator bandwidth is also analyzed. We demonstrate 40 Gb/s (10Gbaud) 16-ary quadrature amplitude modulation (16-QAM) Nyquist-shaped SSB transmission over 160 km standard single mode fiber (SSMF). Without using any chromatic dispersion compensation, the bit error rates (BERs) of 5.4 × 10-4 and 9.0 × 10-5 were measured for the DD-MZM and IQ-MZM, respectively, far below the 7% hard-decision forward error correction threshold. The performance difference between IQ-MZM and DD-MZM is most likely due to the non-ideal electrical packaging. Our work is the first experimental comparison between silicon IQ-MZM and silicon DD-MZM in generating SSB signals. We also demonstrate 50 Gb/s (12.5Gbaud) 16-QAM Nyquist-shaped SSB transmission over 320 km SSMF with a BER of 2.7 × 10-3. Both the silicon IQ-MZM and the DD-MZM show potential for optical transmission at metro scale and for data center interconnection.

18.
Opt Express ; 24(4): 3967-80, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907049

RESUMO

We report the experimental demonstration of single wavelength terabit free-space intensity modulation direct detection (IM-DD) system employing both orbital angular momentum (OAM) multiplexing and polarization division multiplexing (PDM). In our experiment, 12 OAM modes with two orthogonal polarization states are used to generate 24 channels for transmission. Each channel carries 30 Gbaud Nyquist PAM-4 signal. Therefore an aggregate gross capacity record of 1.44 Tb/s (12 × 2 × 30 × 2 Gb/s) is acheived with a modulation efficiency of 48 bits/symbol. After 0.8m free-space transmission, the bit error rates (BERs) of all the channels are below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10(-2). After applying the decision directed recursive least square (DD-RLS) based filter and post filter, the BERs of two polarizations can be reduced from 5.3 × 10(-3) and 7.3 × 10(-3) to 2.2 × 10(-3) and 3.4 × 10(-3), respectively.

19.
Opt Lett ; 41(12): 2767-70, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27304284

RESUMO

We demonstrate 1.728 Tb/s(16×108 Gb/s) direct-detection wavelength division multiplexing (WDM) transmission over 80 km standard single mode fiber (SSMF) with Nyquist 64-ary quadrature amplitude modulation (64-QAM) and half-cycle subcarrier modulation. Each channel carries single sideband 18 GBaud 64-QAM signal and the channel spacing is 27 GHz. Considering 20% soft-decision forward error correction and frame redundancy, a net spectral efficiency record of 3.25 b/s/Hz is achieved for 100 G single polarization direct-detection WDM transmission.

20.
Opt Lett ; 40(23): 5475-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625029

RESUMO

We experimentally demonstrate on-chip all-optical multi-channel wavelength conversion of Nyquist 16 ary quadrature amplitude modulation (16 QAM) signal in a silicon waveguide. The measured optical signal-to-noise ratio (OSNR) penalties of wavelength conversion are ∼2 dB. The observed constellations of converted idlers indicate favorable performance of silicon-waveguide-based multi-channel wavelength conversion. We also experimentally study and compare the phase-conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in the silicon waveguide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA