Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Am Chem Soc ; 146(5): 3075-3085, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38174850

RESUMO

Billions of populations are suffering from the supply-demand imbalance of clean water, resulting in a global sustainability crisis. Membrane desalination is a promising method to produce fresh water from saline waters. However, conventional membranes often encounter challenges related to low water permeation, negatively impacting energy efficiency and water productivity. Herein, we achieve ultrafast desalination over the newly developed alkadiyne-pyrene conjugated frameworks membrane supported on a porous copper hollow fiber. With membrane distillation, the membrane exhibits nearly complete NaCl rejection (>99.9%) and ultrahigh fluxes (∼500 L m-2 h-1) from the seawater salinity-level NaCl solutions, which surpass the commercial polymeric membranes with at least 1 order of magnitude higher permeability. Experimental and theoretical investigations suggest that the large aspect ratio of membrane pores and the high evaporation area contribute to the high flux, and the graphene-like hydrophobic surface of conjugated frameworks exhibits complete salt exclusion. The simulations also confirm that the intraplanar pores of frameworks are impermeable for water and ions.

2.
Small ; 20(32): e2311881, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38372502

RESUMO

Shaping covalent organic frameworks (COFs) into macroscopic objects with robust mechanical properties and hierarchically porous structure is of great significance for practical applications but remains formidable and challenging. Herein, a general and scalable protocol is reported to prepare ultralight and robust pure COF fiber aerogels (FAGs), based on the epitaxial growth synergistic assembly (EGSA) strategy. Specifically, intertwined COF nanofibers (100-200 nm) are grown in situ on electrospinning polyacrylonitrile (PAN) microfibers (≈1.7 µm) containing urea-based linkers, followed by PAN removal via solvent extraction to obtain the hollow COF microfibers. The resultant COF FAGs possess ultralow density (14.1-15.5 mg cm-3) and hierarchical porosity that features both micro-, meso-, and macropores. Significantly, the unique interconnected structure composed of nanofibers and hollow microfibers endows the COF FAGs with unprecedented mechanical properties, which can fully recover at 50% strain and be compressed for 20 cycles with less than 5% stress degradation. Moreover, the aerogels exhibit excellent capacity for organic solvent absorption (e.g., chloroform uptake of >90 g g-1). This study opens new avenues for the design and fabrication of macroscopic COFs with excellent properties.

3.
Small ; : e2407427, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402770

RESUMO

Metal nitrogen carbon (MNC)-based Fenton reactions leveraged with robust peroxymonosulfate (PMS) interaction effectively guarantee the elimination of refractory contaminants, yet the precise design of local microenvironment of MNC to couple with the multiple PMS activation pose major challenges. Herein, a porous Co single-atom catalyst (SAC) with nitrogen defects (Nv) (MCo/NC-6) is fabricated to initiate PMS oxidation reaction. The weaker but richer coordination between Co and N in the precursor facilitates the formation of Nv and porous structure during pyrolysis, achieving simultaneously electronic structure and spatial distribution tuning. Compared with the Co SAC (ZCo/NC-6), the optimized MCo/NC-6 significantly increase the bisphenol A (BPA) reactivity (k = 0.63 min-1), PMS utilization (78%), and singlet oxygen (1O2) yield (100%) by 15.3, 2.4, and 2.6 times, respectively. Experimental analyses and theoretical calculations reveal that the Co─N─C coordination regulated by both micro space and neighboring Nv is endowed high-mobility electrons, thus synergistically facilitating rapid generation and efficient utilization of 1O2. This work promises new opportunities for the design of local microenvironments-regulated SACs, and charts new trajectories in complex Fenton-like systems.

4.
Environ Sci Technol ; 58(2): 1399-1409, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165309

RESUMO

Graphene oxide (GO) membranes enabled by subnanosized diffusion channels are promising to separate small species in membrane distillation (MD). However, the challenge of effectively excluding small volatiles in MD persists due to the severe swelling and subsequent increase in GO interlamination spacing upon direct contact with the hot feed. To address this issue, we implemented a design in which a polymer is confined between the GO interlaminations, creating predominantly 2D nanochannels centered around 0.57 nm with an average membrane pore size of 0.30 nm. Compared to the virginal GO membrane, the polymer-intercalated GO membrane exhibits superior antiswelling performance, particularly at a high feed temperature of 60 °C. Remarkably, the modified membrane exhibited a high flux of approximately 52 L m-2 h-1 and rejection rates of about 100% for small ions and 98% for volatile phenol, with a temperature difference of 40 °C. Molecular dynamics simulations suggest that the sieving mechanisms for ions and volatiles are facilitated by the narrowed nanochannels within the polymer network situated between the 2D nanochannels of GO interlaminations. Concurrently, the unrestricted permeation of water molecules through the multinanochannel GO membrane encourages high-flux desalination of complex hypersaline wastewater.


Assuntos
Destilação , Grafite , Polímeros , Difusão , Água
5.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274907

RESUMO

Catalytic performance decline is a general issue when shaping fine powder into macroscale catalysts (e.g., beads, fiber, pellets). To address this challenge, a phenolic resin-assisted strategy was proposed to prepare porous Co/N carbon beads (ZACBs) at millimeter scale via the phase inversion method followed by confined pyrolysis. Specially, p-aminophenol-formaldehyde (AF) resin-coated zeolitic imidazolate framework (ZIF-67) nanoparticles were introduced to polyacrylonitrile (PAN) solution before pyrolysis. The thermosetting of the coated AF improved the interface compatibility between the ZIF-67 and PAN matrix, inhibiting the shrinkage of ZIF-67 particles, thus significantly improving the void structure of ZIF-67 and the dispersion of active species. The obtained ZACBs exhibited a 99.9% removal rate of tetracycline (TC) within 120 min, with a rate constant of 0.069 min-1 (2.3 times of ZIF-67/PAN carbon beads). The quenching experiments and electron paramagnetic resonance (EPR) tests showed that radicals dominated the reaction. This work provides new insight into the fabrication of high-performance MOF catalysts with outstanding recycling properties, which may promote the use of MOF powder in more practical applications.

6.
Langmuir ; 39(48): 17366-17377, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971405

RESUMO

The urgent need to efficiently and rapidly decontaminate uranium contamination in aquatic environments underscores its significance for ecological preservation and environmental restoration. Herein, a series of titanium-doped zirconium-based metal-organic frameworks were meticulously synthesized through a stepwise process. The resultant hybrid bimetallic materials, denoted as NU-Zr-n%Ti, exhibited remarkable efficiency in eliminating uranium (U (VI)) from aqueous solution. Batch experiments were executed to comprehensively assess the adsorption capabilities of NU-Zr-n%Ti. Notably, the hybrid materials exhibited a substantial increase in adsorption capacity for U (VI) compared to the parent NU-1000 framework. Remarkably, the optimized NU-Zr-15%Ti displayed a noteworthy adsorption capacity (∼118 mg g-1) along with exceptionally rapid kinetics at pH 4.0, surpassing that of pristine NU-1000 by a factor of 10. This heightened selectivity for U (VI) persisted even when diverse ions exist. The dominant mechanisms driving this high adsorption capacity were identified as the robust electrostatic attraction between the negatively charged surface of NU-Zr-15%Ti and positively charged U (VI) species as well as surface complexation. Consequently, NU-Zr-15%Ti emerges as a promising contender for addressing uranium-laden wastewater treatment and disposal due to its favorable sequestration performance.

7.
Environ Sci Technol ; 57(19): 7612-7623, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37104662

RESUMO

Hypersaline wastewater treatment using membrane distillation (MD) has gained significant attention due to its ability to completely reject nonvolatile substances. However, a critical limitation of current MD membranes is their inability to intercept volatile substances owing to their large membrane pores. Additionally, the strong interaction between volatile substances and MD membranes underwater tends to cause membrane wetting. To overcome these challenges, we developed a dual-layer thin film composite (TFC) Janus membrane through electrospinning and sequential interfacial polymerization of a polyamide (PA) layer and cross-linking a polyvinyl alcohol/polyacrylic acid (PP) layer. The resulting Janus membrane exhibited high flux (>27 L m-2 h-1), salt rejection of ∼100%, phenol rejection of ∼90%, and excellent resistance to wetting and fouling. The interlayered interface between the PA and PP layer allowed the sieve of volatile substances by limiting their dissolution-diffusion, with the increasing hydrogen bond network formation preventing their transport. In contrast, small water molecules with powerful dynamics were permeable through the TFC membrane. Both experimental and molecular dynamics simulation results elucidated the sieving mechanism. Our findings demonstrate that this type of TFC Janus membrane can serve as a novel strategy to design next-generation MD membranes against volatile and non-volatile contaminants, which can have significant implications in the treatment of complex hypersaline wastewater.


Assuntos
Destilação , Membranas Artificiais , Molhabilidade , Águas Residuárias , Água , Nylons/química
8.
Sensors (Basel) ; 23(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37960499

RESUMO

To develop implementation research on distributed optical fiber sensing technology, field tests were conducted on municipal roads and railways using a distributed acoustic sensor (DAS). Data were collected by the DAS during a field test for a long time period (more than 20 min), and we conducted short-term (<10 s) and long-term (≥10 s) analyses on these data separately. In the short-term data analysis, the vehicle type, vehicle length, and working status of the vehicle engine or the compressor were identified. In the long-term data analysis, the traffic flow was monitored, and the running distance, acceleration, speed, and braking distance of the vehicle were obtained. The characteristics of the vehicle operation data obtained in these field tests are important in developing the data processing method of DASs, which will help to promote the implementation of DASs.

9.
Environ Sci Technol ; 56(12): 8833-8843, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35618660

RESUMO

Single oxygen-based advanced oxidation processes (1O2-AOPs) exhibit great prospects in selective degradation of organic pollutants. However, efficient production of 1O2 via tailored design of catalysts to achieve selective oxidation of contaminants remains challenging. Herein, we develop a simple strategy to regulate the components and coordination of Co-N-C catalysts at the atomic level by adjusting the Zn/Co ratio of bimetallic zeolitic imidazolate frameworks (ZnxCo1-ZIFs). Zn4Co1-C demonstrates 98% selective removal of phenol in the mixed phenol/benzoic acid (phenol/BA) solutions. Density functional theory calculations and experiments reveal that more active CoN4 sites are generated in Zn4Co1-C, which are beneficial to peroxymonosulfate activation to generate 1O2. Furthermore, the correlation between the origin of selectivity and well-defined catalysts is systematically investigated by the electron paramagnetic resonance test and quenching experiments. This work may provide novel insights into selective removal of target pollutants in a complicated water matrix.


Assuntos
Poluentes Ambientais , Catálise , Oxigênio , Peróxidos , Fenóis , Água
10.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296725

RESUMO

In this work, polyacrylonitrile/aminated polymeric nanosphere (PAN/APN) nanofibers were prepared by electrospinning of monodispersed aminated polymeric nanospheres (APNs) for removal of Cr(VI) from aqueous solution. Characterization results showed that obtained PAN/APNs possessed nitrogen functionalization. Furthermore, the adsorption application results indicated that PAN/APN nanofibers exhibited a high adsorption capacity of 556 mg/g at 298 K for Cr(VI) removal. The kinetic data showed that the adsorption process fits the pseudo-second order. A thermodynamic study revealed that the adsorption of Cr(VI) was spontaneous and endothermic. The coexisting ions Na+, Ca2+, K+, Cl-, NO3- and PO43- had little influence on Cr(VI) adsorption, while SO42- in solution dramatically decreased the removal performance. In the investigation of the removal mechanism, relative results indicated that the adsorption behavior possibly involved electrostatic adsorption, redox reaction and chelation. PAN/APN nanofibers can detoxify Cr(VI) to Cr(III) and subsequently chelate Cr(III) on its surface. The unique structure and nitrogen functionalization of PAN/APN nanofibers make them novel and prospective candidates in heavy metal removal.


Assuntos
Metais Pesados , Nanofibras , Nanosferas , Poluentes Químicos da Água , Nanofibras/química , Poluentes Químicos da Água/química , Cromo/química , Adsorção , Cinética , Polímeros , Íons , Nitrogênio
11.
Environ Sci Technol ; 55(16): 11308-11317, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34319084

RESUMO

Membrane distillation (MD) is a promising technology for treating the concentrated seawater discharged from the desalination process. Interconnected porous membranes, fabricated by additive manufacturing, have received significant attention for MD technology because of their excellent permeability. However, their poor hydrophobic durability induced by the deformation of pores constrains their water desalination performance. Herein, an in situ three-dimensional (3D) welding approach involving emulsion electrospinning is reported for fabricating robust nanofibrous membranes. The reported method is simple and effective for welding nanofibers at their intersections, and the reinforced membrane pores are uniform in the 3D space. The results show that the in situ 3D welded nanofibrous membrane, with a stability of 170 h and water recovery of 76.9%, exhibits better desalination performance than the nonwelded (superhydrophobic) nanofibrous membrane and the postwelded (superhydrophobic) nanofibrous membrane. Furthermore, the stability mechanism of the in situ 3D welded nanofibrous membrane and the two different wetting mechanisms of the nonwelded and postwelded nanofibrous membranes were investigated in the current work. More significantly, the in situ 3D welded nanofibrous membrane can further concentrate the actual concentrated seawater (121°E, 37°N) to crystallization, demonstrating its potential applications for the desalination of challenging concentrated seawater.


Assuntos
Nanofibras , Soldagem , Destilação , Membranas Artificiais , Água do Mar
12.
Environ Sci Technol ; 52(5): 3027-3036, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29389116

RESUMO

Water flux and durability are the two critical parameters that are closely associated with the practical application of membrane distillation (MD). Herein, we report a facile approach to fabricate superhydrophobic polyimide nanofibrous membranes (PI NFMs) with hierarchical structures, interconnected pores, and high porosity, which was derived from the electrospinning, dual-bioinspired design, and fluorination processes. Bioinspired adhesive based on polydopamine /polyethylenimine (PDA/PEI) composite was first linked onto membrane substrates and then assembled lotus leaf hierarchical structure by binding the negatively charged silica nanoparticles (SiO2 NPs) via electrostatic attraction. The resultant superhydrophobic PI NFMs exhibit a water contact angle of 152°, robust hot water resistance of 85 °C, and high water entry pressure of 42 kPa. Moreover, the membrane with omniphobicity presents high water flux over 31 L m-2 h-1 and high salts rejection of ∼100% as well as robust durability for treating high salinity wastewater containing typical low surface tension and dissolved contaminants (Δ T = 40 °C). Significantly, the novel dual-bioinspired method can be used as a universal tool to modify various materials with hierarchical structures, which is expected to provide more effective alternative membranes for MD and even for other selective wetting separation fields.


Assuntos
Destilação , Dióxido de Silício , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Molhabilidade
13.
Environ Sci Technol ; 51(17): 9674-9682, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28771343

RESUMO

A comparative experimental and molecular dynamics (MD) simulation study was carried out to investigate the aggregation of graphene oxide (GO). Mechanisms behind the effects of solution chemistries (pH, metal ions, and tannic acid (TA)) and GO topology (carboxyl content, GO size, and GO thickness) were uncovered. For example, MD results showed that more hydrogen bonds formed between GO and water at higher pH, according well with the increased hydrophilicity of GO calculated based on contact angle measurements. Radial distribution functions analysis suggested Ca2+ interacted more strongly with GO than Na+, which explained the experimental observations that Ca2+ was more effective in accelerating the aggregation process than Na+. The adsorption-bridging and steric effects of TA were simulated, and TA was found to be unfolded upon wrapping on GOs, leading to an increased capacity for ion and solvent binding. The evaluations of contributions to GO hydrophilicity, electrostatic energy, and intensities of interactions with metal ions indicated the carboxyl group is the essential functional group in mediating the stability of GO. Overall, by combining MD simulations with experimental measurements, we provided molecular-level understandings toward the aggregation of GO, indicating MD, if used properly, can be applied as a useful tool to obtain insights into the aggregation of nanomaterials.


Assuntos
Grafite , Simulação de Dinâmica Molecular , Nanoestruturas , Óxidos , Água
14.
Water Res ; 268(Pt A): 122581, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39395364

RESUMO

A novel visible-light photocatalytic membrane bioreactor (R3) was constructed for membrane fouling control and effluent quality improvement. Specially, g-C3N4 modified membrane was evaluated for the performance of synergistic separation and photocatalysis. Another two parallel reactors, MBRs with ceramic membrane (R1) and g-C3N4 membrane in dark condition (R2), were operated synchronously for comparison. A satisfactory effluent quality was obtained in R3 with COD and NH4+-N around 22.0 mg/L and 1.02 mg/L during 60-day operation, which was superior to R1 (27.8, 1.42 mg/L) and R2 (29.9, 2.26 mg/L). The thickness of cake layer on membranes in R3 (2.46 µm) was thinner than R1 (3.52 µm) and R2 (4.97 µm) after operation, indicating the introduction of visible light could effectively mitigate membranes fouling. Moreover, microorganism community analysis revealed that visible light increased the relative abundance of Bacteroidetes and Chryseolinea, which not only enhanced the activity of microorganisms in metabolizing organic nutrients, but also improved the transfer and utilization of photogenerated electrons on the semiconductor-microorganism interface. The active aromatic protein metabolism and the upregulated related enzymes further demonstrated the synergistic effect of photocatalysis and microbial communities on the membrane fouling mitigation. This work provides a novel application of photocatalysis into antibiofouling effect in MBRs, and opens a strategy for bacteria inactivation and foulants removal with eco-friendly solar energy.

15.
Sci Total Environ ; 912: 169035, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056677

RESUMO

Adsorption is one of the most effective methods for ecotoxic antibiotics removal, while developing high-performance adsorbents with excellent adsorption capacity is indispensable. As the unavoidable by-product of wastewater, sewage sludge has dual properties of pollution and resources. In this study, dyeing sludge waste was converted to biochar by KOH activation and pyrolysis, and used as an efficient adsorbent for aqueous antibiotics removal. The optimized dyeing sludge-derived biochar (KSC-8) has excellent specific surface area (1178.4 m2/g) and the adsorption capacity for tetracycline (TC) could reach up to 1081.3 mg/g, which is four and five times higher than those without activation, respectively. The PSO (pseudo-second-order) kinetic model and the Langmuir isotherm model fitted better to the experimental data. The obtained KSC-8 has stabilized adsorption capacity for long-term fixed-bed experiments, and maintained 86.35% TC removal efficiency after five adsorption-regeneration cycles. The adsorption mechanism involves electrostatic attraction, hydrogen bonding, π-π interactions and pore filling. This work is a green and eco-friendly way as converting the waste to treat waste in aiming of simultaneous removal of antibiotics and resource recovery of dyeing sludge.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Esgotos , Corantes , Água , Tetraciclina , Carvão Vegetal , Adsorção , Cinética , Poluentes Químicos da Água/análise
16.
J Colloid Interface Sci ; 679(Pt A): 1171-1180, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39423683

RESUMO

The non-radical pathway dominated by the electron transfer process (ETP) has gained considerable attention for the removal of organic contaminants in persulfate-based advanced oxidation processes. Rationally designing new catalysts with optimized composition and structural merits and further elucidating the enhanced removal mechanism are of great importance. In this work, we successfully synthesized a nitrogen-sulfur co-doped carbon encapsulated cobalt phosphide (Co2P) on both sides of MXene nanosheets (MZPC) to degrade bisphenol A (BPA) from organic wastewater. The results indicated that BPA was degraded by 98.2 % in a mere 5 min using 0.1 g L-1 of peroxymonosulfate (PMS) and 0.05 g L-1 of the optimized catalyst (MZPC-9), exhibiting an excellent pseudo-first-order kinetics rate constant (k = 1.485 min-1). Uniformly dispersed Co2P nanoparticles (approximately 9.4 nm, calculated using the Scherrer equation) on both sides of MXene exhibited enhanced binding affinity with PMS, forming the MZPC-9-PMS* metastable complexes with potent oxidative capability. The resultant MZPC-9-PMS* complexes induced the polymerization reaction of BPA and achieved 81 % total organic carbon (TOC) removal. This study offers a novel perspective on the design of metal active centers to enhance the ETP-dominated non-radical pathway for pollutant degradation.

17.
Nucl Med Commun ; 45(9): 812-817, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38803240

RESUMO

OBJECTIVE: The purpose of this study was to analyze the correlation between specified dual time-point fluorine-18 fluorodeoxyglucose ( 18 F-FDG) PET/computed tomography (CT) imaging parameters and pathological characteristics in non-small cell lung cancer (NSCLC) patients. METHODS: This study retrospectively analyzed 47 patients with NSCLC. All patients underwent dual time-point 18 F-FDG PET/CT imaging. We obtained the metabolic parameters, standardized uptake value (SUV) maximum, SUV mean , delayed standardized uptake value (DSUV) maximum, DSUV mean , delay index standardized uptake value (DISUV) maximum, and DISUV mean , of the primary tumor. The tumor size was measured by CT. All lymph nodes had a definite pathological diagnosis. We next evaluated the status of the lymph node metastases (LNM) and the correlations between metabolic parameters and clinical characteristics. Receiver operating characteristic curves were drawn for the prediction of LNM. RESULTS: We found that the DSUV max , DISUV max , DSUV mean , and tumor size were significantly related to LNM ( P  = 0.036, 0.009, and 0.049, respectively). Multivariate analysis revealed that tumor size and DISUV max were independent risk factors for LNM in lung cancer patients. According to the receiver operating characteristic curve analysis, the optimal cutoff values for DISUV max and tumor size were 0.33 and 2.8 cm, respectively. When these two parameters were combined, the area under the curve for predicting LNM in NSCLC was 0.768, and the sensitivity was 95.7% for predicting LNM in lung cancer patients. We further allocated the patients to three groups: the high-risk group (tumor size ≥ 2.8 cm, DISUV max  ≥ 0.33), the moderate-risk group (tumor size ≥ 2.8 cm, DISUV max  < 0.33, or tumor size < 2.8 cm, DISUV max  ≥ 0.33), and the low-risk group (tumor size < 2.8 cm, DISUV max  < 0.33). The rates of LNM were 70, 50, and 0%, respectively. CONCLUSION: Tumor size and DISUV max are risk factors for predicting LNM, and they are more useful in combination. Compared with standard PET/CT imaging, dual time-point PET/CT imaging has added value in predicting LNM in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fluordesoxiglucose F18 , Neoplasias Pulmonares , Metástase Linfática , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Masculino , Feminino , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Idoso , Metástase Linfática/diagnóstico por imagem , Estudos Retrospectivos , Adulto , Idoso de 80 Anos ou mais , Fatores de Tempo
18.
Sci Total Environ ; 915: 170183, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38246367

RESUMO

Converting industrial sludge into catalytic materials for water purification is a promising approach to simultaneously realize effective disposal of sludge and resource of water. However, manipulating the high efficiency remains a huge challenge due to the difficulty in the active sites control of the sludge. Herein, we proposed a constitutive modulation strategy by the combination of hydrothermal and pyrolysis (HTP) for the fabrication of defects-assistant Fe containing sludge-derived carbon catalysts on upgrading performance in peroxymonosulfate (PMS) activation for pollutant degradation. Adjustable defects on dyeing sludge-derived carbon catalysts (DSCC) were achieved by introducing oxygen or nitrogen functional precursors (hydroquinone or p-phenylenediamine) during hydrothermal processes and by further pyrolysis, where O was detrimental while N was beneficial to defect generation. Compared to the DSCC with less defects (DHSC-O), the defect-rich sample (DHSC-2N) exhibited superior catalytic performance of PMS activation for bisphenol A (BPA) elimination (k = 0.45 min-1, 2.52 times of DHSC-O), as well as 81.4% total organic carbon (TOC) removal. Meanwhile, the degradation capacity was verified in wide pH range (2.1-8.1) and various aqueous matrices, reflecting the excellent adaptability and anti-interference performance. Furthermore, the continuous-flow experiments on industrial wastewater showed synchronous BPA and chemical oxygen demand (COD) removal, implying great potential for practical application. Solid electron paramagnetic resonance (EPR) and 57Fe Mösssbauer spectra analysis indicated that the defects acted as secondary active sites for Fe sites, which were beneficial to accelerating the electron transfer process. The only Fe active sites preferred the radical pathway. The controllable reaction tendency provides possibilities for the on-demand design of sludge-based catalysts to meet the requirements of practical wastewater treatment under Fenton-like reaction.

19.
J Colloid Interface Sci ; 662: 545-554, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364479

RESUMO

The desalination performance of thin film nanocomposite (TFN) membranes is significantly influenced by the nature of nanofillers and the structure of the polyamide (PA) layer. Herein, a micelles regulated interfacial polymerization (MRIP) strategy is reported for the preparation of TFN membranes with enhanced nanofiltration (NF) performance. Specially, stable and ultrafine micelles, synthesized from the poly(ethylene oxide)-b-poly(4-vinyl pyridine)-b-polystyrene (PEO-PVP-PS) triblock copolymers, were utilized as regulators in the aqueous phase during the interfacial polymerization (IP) process. TFN membranes were fabricated with varying concentrations of micelles to improve their properties and performances. The structure of the PA layer was further regulated by modulating the content of trimesoyl chloride (TMC), which significantly enhances the performance of the TFN membrane with micelles. Attributable to the homogeneously dispersed micelles and the modified PA layer, the optimized membrane denoted as TFN-2-0.3 exhibits an improved separation performance of 20.7 L m-2h-1 bar-1 and 99.3 % Na2SO4 rejection, demonstrating nearly twice the permeance and 2.7 % higher rejection than that of the original control membrane, respectively. The mechanism of this MRIP strategy was investigated through the diffusion experiments of piperazine (PIP) and interfacial tension tests. The incorporated micelles effectively lower the interfacial tension, promote the diffusion of PIP and accelerate the IP reaction, resulting in a denser and thinner PA layer. Collectively, these findings demonstrate that TFN membranes with micelles exhibit increased roughness, enhanced hydrophilicity, superior rejection to divalent salts, and better acid-base resistance, highlighting their potential applications in the design of TFN membranes.

20.
J Colloid Interface Sci ; 661: 358-365, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301472

RESUMO

Rational design of high-performance electrode materials is crucial for enhancing desalination performance of capacitive deionization (CDI). Here, ultrathin nitrogen-doped carbon/Ti3C2Tx-TiN (NC/MX-TiN) heterostructure was developed by pyrolyzing zeolite imidazolate framework-8 (ZIF-8) nanoparticles sandwiched MXene (ZSM), which were formed by assembling ultrafine ZIF-8 nanoparticles with size of 20 nm on both sides of MXene nanosheets. The introduction of ultrasmall ZIF-8 particles allowed for in situ nitridation of the MXene during pyrolysis, forming consecutive TiN layers tightly connected to the internal MXene. The two-dimensional (2D) heterostructure exhibited remarkable properties, including high specific surface area and excellent conductivity. Additionally, the resulting TiN demonstrated exceptional redox capability, which significantly enhanced the performance of CDI and ensured cycling stability. Benefiting from these advantages, the NC/MX-TiN exhibited a maximum adsorption capacity of 45.6 mg g-1 and a steady cycling performance in oxygenated saline water over 50 cycles. This work explores the rational design and construction of MXene-based 2D heterostructure and broadens new horizons for the development of novel CDI electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA