Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(18): 8385-8391, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703459

RESUMO

We use in situ liquid secondary ion mass spectroscopy, cryogenic transmission electron microscopy, and density functional theory calculation to delineate the molecular process in the formation of the solid-electrolyte interphase (SEI) layer under the dynamic operating conditions. We discover that the onset potential for SEI layer formation and the thickness of the SEI show dependence on the solvation shell structure. On a Cu film anode, the SEI is noticed to start to form at around 2.0 V (nominal cell voltage) with a final thickness of about 40-50 nm in the 1.0 M LiPF6/EC-DMC electrolyte, while for the case of 1.0 M LiFSI/DME, the SEI starts to form at around 1.5 V with a final thickness of about 20 nm. Our observations clearly indicate the inner and outer SEI layer formation and dissipation upon charging and discharging, implying a continued evolution of electrolyte structure with extended cycling.

2.
Nat Mater ; 21(11): 1246-1251, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175522

RESUMO

Manipulating the insulator-metal transition in strongly correlated materials has attracted a broad range of research activity due to its promising applications in, for example, memories, electrochromic windows and optical modulators1,2. Electric-field-controlled hydrogenation using ionic liquids3-6 and solid electrolytes7-9 is a useful strategy to obtain the insulator-metal transition with corresponding electron filling, but faces technical challenges for miniaturization due to the complicated device architecture. Here we demonstrate reversible electric-field control of nanoscale hydrogenation into VO2 with a tunable insulator-metal transition using a scanning probe. The Pt-coated probe serves as an efficient catalyst to split hydrogen molecules, while the positive-biased voltage accelerates hydrogen ions between the tip and sample surface to facilitate their incorporation, leading to non-volatile transformation from insulating VO2 into conducting HxVO2. Remarkably, a negative-biased voltage triggers dehydrogenation to restore the insulating VO2. This work demonstrates a local and reversible electric-field-controlled insulator-metal transition through hydrogen evolution and presents a versatile pathway to exploit multiple functional devices at the nanoscale.

3.
Nat Mater ; 21(7): 795-803, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35501365

RESUMO

Intercalation-type metal oxides are promising negative electrode materials for safe rechargeable lithium-ion batteries due to the reduced risk of Li plating at low voltages. Nevertheless, their lower energy and power density along with cycling instability remain bottlenecks for their implementation, especially for fast-charging applications. Here, we report a nanostructured rock-salt Nb2O5 electrode formed through an amorphous-to-crystalline transformation during repeated electrochemical cycling with Li+. This electrode can reversibly cycle three lithiums per Nb2O5, corresponding to a capacity of 269 mAh g-1 at 20 mA g-1, and retains a capacity of 191 mAh g-1 at a high rate of 1 A g-1. It exhibits superb cycling stability with a capacity of 225 mAh g-1 at 200 mA g-1 for 400 cycles, and a Coulombic efficiency of 99.93%. We attribute the enhanced performance to the cubic rock-salt framework, which promotes low-energy migration paths. Our work suggests that inducing crystallization of amorphous nanomaterials through electrochemical cycling is a promising avenue for creating unconventional high-performance metal oxide electrode materials.

4.
Environ Sci Technol ; 57(15): 6273-6283, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37022139

RESUMO

Mixing states of aerosol particles are crucial for understanding the role of aerosols in influencing air quality and climate. However, a fundamental understanding of the complex mixing states is still lacking because most traditional analysis techniques only reveal bulk chemical and physical properties with limited surface and 3-D information. In this research, 3-D molecular imaging enabled by ToF-SIMS was used to elucidate the mixing states of PM2.5 samples obtained from a typical Beijing winter haze event. In light pollution cases, a thin organic layer covers separated inorganic particles; while in serious pollution cases, ion exchange and an organic-inorganic mixing surface on large-area particles were observed. The new results provide key 3-D molecular information of mixing states, which is highly potential for reducing uncertainty and bias in representing aerosol-cloud interactions in current Earth System Models and improving the understanding of aerosols on air quality and human health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Pequim , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Estações do Ano , Aerossóis/análise , Imagem Molecular , China
5.
Nano Lett ; 22(13): 5530-5537, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771509

RESUMO

Epitaxial growth is a powerful tool for synthesizing heterostructures and integrating multiple functionalities. However, interfacial mixing can readily occur and significantly modify the properties of layered structures, particularly for those containing energy storage materials with smaller cations. Here, we show a two-step sequence involving the growth of an epitaxial LiCoO2 cathode layer followed by the deposition of a binary transition metal oxide. Orientation-controlled epitaxial synthesis of the model solid-state-electrolyte Li2WO4 and anode material Li4Ti5O12 occurs as WO3 and TiO2 nucleate and react with Li ions from the underlying cathode. We demonstrate that this lithiation-assisted epitaxy approach can be used for energy materials discovery and exploring different combinations of epitaxial interfaces that can serve as well-defined model systems for mechanistic studies of energy storage and conversion processes.

6.
J Am Chem Soc ; 143(13): 5212-5221, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33759522

RESUMO

Heterostructures of three-dimensional (3D) halide perovskites are unstable because of facile anion interdiffusion at halide interfaces. Two-dimensional (2D) Ruddlesden-Popper halide perovskites (RPPs) show suppressed and anisotropic ion diffusion that could enable stable RPP heterostructures, yet the direct and general growth of lateral RPP heterostructures remains challenging. Here, we show that halide miscibility in RPPs decreases with perovskite layer thickness (n), enabling the formation of sharp halide lateral heterostructures from n = 1 and 2 RP lead iodide microplates via anion exchange with hydrogen bromide vapor. In contrast, RPPs with n ≥ 3 form more diffuse lateral heterojunctions, more similar to those in 3D perovskites. The anion exchange behaviors are further modulated by the spacer and A-site cations in the RPP structures. These new insights, and kinetic studies of the exchange reactions, enable the preparation of lateral heterostructures from various n = 2 RPPs that are more stable against anion interdiffusion and degradation for potential optoelectronic device applications.

7.
J Am Chem Soc ; 143(14): 5540-5549, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33819019

RESUMO

Single-atom catalysts are often reported to have catalytic properties that surpass those of nanoparticles, while a direct comparison of sites common and different for both is lacking. Here we show that single atoms of Pt-group metals embedded into the surface of Fe3O4 have a greatly enhanced interaction strength with CO2 compared with the Fe3O4 surface. The strong CO2 adsorption on single Rh atoms and corresponding low activation energies lead to 2 orders of magnitude higher conversion rates of CO2 compared to Rh nanoparticles. This high activity of single atoms stems from the partially oxidic state imposed by their coordination to the support. Fe3O4-supported Rh nanoparticles follow the behavior of single atoms for CO2 interaction and reduction, which is attributed to the dominating role of partially oxidic sites at the Fe3O4-Rh interface. Thus, we show a likely common catalytic chemistry for two kinds of materials thought to be different, and we show that single atoms of Pt-group metals on Fe3O4 are especially successful materials for catalyzed reactions that depend primarily upon sites with the metal-O-Fe environment.

8.
Anal Chem ; 93(2): 1068-1075, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33284581

RESUMO

Understanding the structure and composition of aluminate complexes in extremely alkaline systems such as Bayer liquors has received enormous attention due to their fundamental and industrial importance. However, obtaining direct molecular information of the underlying ion-ion interactions using traditional approaches such as NMR spectroscopy or Raman spectroscopy is challenging due to the weakness of these interactions and/or their complex overlapping spectral signatures. Here, we exploit in situ liquid secondary-ion mass spectrometry (SIMS) as a new approach and show how it enables new insights. In contrast with traditional techniques, using SIMS we succeeded in acquiring information on dominant ion clusters in these alkaline systems. In Na+/K+ mixed alkaline aluminate solutions, we clearly observe preferential formation of Na+-anion clusters over K+-anion clusters. Evaluation of these clusters by density functional theory (DFT) calculations shows that these structures are stable and that their relative bond energies are consistent with their observed SIMS signal intensity differences. This demonstrates a key advantage of in situ liquid SIMS for overcoming ambiguities obscuring important information in these systems on constituent molecular clusters defined by relatively weak ion-pair competition and ion-solvent interactions.

9.
Analyst ; 146(19): 5855-5865, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34378550

RESUMO

Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanisms by which plants associate with PGPR to elicit such beneficial effects need further study. Here, we present time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging of Brachypodium distachyon (Brachypodium) seeds with and without exposure to two model PGPR, i.e., Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.). Delayed image extraction was used to image PGPR-treated seed sections to reveal morphological changes. ToF-SIMS spectral comparison, principal component analysis (PCA), and two-dimensional (2D) imaging show that the selected PGPR have different effects on the host seed surface, resulting in changes in chemical composition and morphology. Metabolite products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and indole-3-acetic acid (IAA), were identified on the PGPR-treated seed surfaces. These compounds have different distributions on the Brachypodium seed surface for the two PGPR, indicating that the different bacteria elicit distinct responses from the host. Our results illustrate that ToF-SIMS is an effective tool to study plant-microbe interactions and to provide insightful information with submicrometer lateral resolution of the chemical distributions associated with morphological features, potentially offering a new way to study the mechanisms underlying beneficial roles of PGPR.


Assuntos
Brachypodium , Micrococcaceae , Imagem Molecular , Sementes
10.
Environ Sci Technol ; 55(10): 7123-7134, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33901397

RESUMO

Turnover of soil organic carbon (SOC) is strongly affected by a balance between mineral protection and microbial degradation. However, the mechanisms controlling the heterogeneous and preferential adsorption of different types of SOC remain elusive. In this work, the heterogeneous adsorption of humic substances (HSs) and microbial carbon (MC) on a clay mineral (nontronite NAu-2) during microbial-mediated Fe redox cycling was determined using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results revealed that HSs pre-adsorbed on NAu-2 would partially inhibit structural modification of NAu-2 by microbial Fe(III) reduction, thus retarding the subsequent adsorption of MC. In contrast, NAu-2 without precoated HSs adsorbed a significant amount of MC from microbial polysaccharides as a result of Fe(III) reduction. This was attributed to the deposition of a thin Al-rich layer on the clay surface, which provided active sites for MC adsorption. This study provides direct and detailed molecular evidence for the first time to explain the preferential adsorption of MC over HSs on the surface of clay minerals in iron redox processes, which could be critical for the preservation of MC in soil. The results also indicate that ToF-SIMS is a unique tool for understanding complex organic-mineral-microbe interactions.


Assuntos
Silicatos de Alumínio , Compostos Férricos , Adsorção , Carbono , Minerais , Oxirredução , Silicatos , Solo , Espectrometria de Massa de Íon Secundário
11.
Anal Chem ; 92(15): 10402-10411, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32614167

RESUMO

Direct interspecies electron transfer (DIET) has been considered as a novel and highly efficient strategy in both natural anaerobic environments and artificial microbial fuel cells. A syntrophic model consisting of Geobacter metallireducens and Geobacter sulfurreducens was studied in this work. We conducted in vivo molecular mapping of the outer surface of the syntrophic community as the interface of nutrients and energy exchange. System for Analysis at the Liquid Vacuum Interface combined with time-of-flight secondary ion mass spectrometry was employed to capture the molecular distribution of syntrophic Geobacter communities in the living and hydrated state. Principal component analysis with selected peaks revealed that syntrophic Geobacter aggregates were well differentiated from other control samples, including syntrophic planktonic cells, pure cultured planktonic cells, and single population biofilms. Our in vivo imaging indicated that a unique molecular surface was formed. Specifically, aromatic amino acids, phosphatidylethanolamine components, and large water clusters were identified as key components that favored the DIET of syntrophic Geobacter aggregates. Moreover, the molecular changes in depths of the Geobacter aggregates were captured using dynamic depth profiling. Our findings shed new light on the interface components supporting electron transfer in syntrophic communities based on in vivo molecular imaging.


Assuntos
Aminoácidos Aromáticos/metabolismo , Geobacter/fisiologia , Espectrometria de Massas/métodos , Imagem Molecular/métodos , Fosfatidiletanolaminas/metabolismo , Aminoácidos Aromáticos/química , Biofilmes , Transporte de Elétrons , Fosfatidiletanolaminas/química , Análise de Componente Principal , Água/química , Água/metabolismo
12.
Anal Chem ; 92(20): 13785-13793, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32872776

RESUMO

Three-dimensional (3D) molecular imaging of biological structures is important for a wide range of research. In recent decades, secondary-ion mass spectrometry (SIMS) has been recognized as a powerful technique for both two-dimensional and 3D molecular imaging. Sample fixations (e.g., chemical fixation and cryogenic fixation methods) are necessary to adapt biological samples to the vacuum condition in the SIMS chamber, which has been demonstrated to be nontrivial and less controllable, thus limiting the wider application of SIMS on 3D molecular analysis of biological samples. Our group recently developed in situ liquid SIMS that offers great opportunities for the molecular study of various liquids and liquid interfaces. In this work, we demonstrate that a further development of the vacuum-compatible microfluidic device used in in situ liquid SIMS provides a convenient freeze-fixation of biological samples and leads to more controllable and convenient 3D molecular imaging. The special design of this new vacuum-compatible liquid chamber allows an easy determination of sputter rates of ice, which is critical for calibrating the depth scale of frozen biological samples. Sputter yield of a 20 keV Ar1800+ ion on ice has been determined as 1500 (±8%) water molecules per Ar1800+ ion, consistent with our results from molecular dynamics simulations. Moreover, using the information of ice sputter yield, we successfully conduct 3D molecular imaging of frozen homogenized milk and observe network structures of interesting organic and inorganic species. Taken together, our results will significantly benefit various research fields relying on 3D molecular imaging of biological structures.


Assuntos
Imageamento Tridimensional/métodos , Dispositivos Lab-On-A-Chip , Espectrometria de Massa de Íon Secundário , Animais , Congelamento , Imageamento Tridimensional/instrumentação , Íons/química , Leite/química , Vácuo , Água/química
13.
Analyst ; 145(2): 393-401, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31789324

RESUMO

The rhizosphere is arguably the most complex microbial habitat on Earth, comprising an integrated network of plant roots, soil and a highly diverse microbial community (the rhizosphere microbiome). Understanding, predicting and controlling plant-microbe interactions in the rhizosphere will allow us to harness the plant microbiome as a means to increase or restore plant ecosystem productivity, improve plant responses to a wide range of environmental perturbations, and mitigate the effects of climate change by designing ecosystems for long-term soil carbon storage. To this end, it is imperative to develop new molecular approaches with high spatial resolution to capture interactions at the plant-microbe, microbe-microbe, and plant-plant interfaces. In this work, we designed an imaging sample holder that allows integrated surface imaging tools to map the same locations of a plant root-microbe interface with submicron lateral resolutions, providing novel in vivo analysis of root-microbe interactions. Specifically, confocal fluorescence microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were used for the first time for the correlative imaging of the Brachypodium distachyon root and its interaction with Pseudomonas SW25, a typical plant growth-promoting soil bacterium. Imaging data suggest that the root surface is inhomogeneous and that the interaction between Pseudomonas and Brachypodium roots was confined to only a few spots along the sampled root segments and that the bacterial attachment spots were enriched in Na- and S-related and high-mass organic species. We conclude that the attachment of the Pseudomonas cells to the root surface is outcompeted by strong root-soil mineral interactions but facilitated by the formation of extracellular polymeric substances (EPS).


Assuntos
Brachypodium/metabolismo , Compostos Orgânicos/metabolismo , Raízes de Plantas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas/metabolismo , Brachypodium/microbiologia , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Raízes de Plantas/microbiologia , Pseudomonas/isolamento & purificação , Infecções por Pseudomonas/metabolismo , Microbiologia do Solo
14.
Environ Sci Technol ; 54(8): 5207-5217, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32101428

RESUMO

Previous studies have documented the antibacterial activity of certain iron-containing clays. However, the repulsion between negatively charged bacteria and the clay surface makes this process inefficient. The objective of this study is to improve the bactericidal efficiency of clays by reversing their surface charge from negative to positive. To achieve this objective, positively charged chitosan, a nontoxic and biodegradable polymer, was intercalated into nontronite NAu-2. Chitosan-intercalated NAu-2 (C-NAu-2) was chemically reduced to obtain reduced C-NAu-2 (rC-NAu-2). Relative to reduced nontronite (rNAu-2), the antibacterial activity of rC-NAu-2 is higher and more persistent over a pH range of 6-8. The close spatial association between positively charged rC-NAu-2 and negatively charged bacteria increases the chances of cell membrane attack by extracellular ROS, the influx of soluble Fe2+ into the bacterial cell, and the yield of intracellular ROS. All these factors contribute to the enhanced antibacterial activity of rC-NAu-2. In contrast to rNAu-2 treated E. coli cells, where membrane damage and intracellular ROS/Fe accumulation are restricted to the polar regions, the close bacteria-clay association in rC-NAu-2 results in nonselective membrane damage and more uniform intracellular ROS/Fe distribution across whole bacterial cells. These results advance the antibacterial model by highlighting the importance of bacteria-clay interactions to the antibacterial activity of Fe-bearing clays.


Assuntos
Quitosana , Silicatos de Alumínio , Antibacterianos , Escherichia coli , Oxirredução
15.
Phys Chem Chem Phys ; 22(21): 11771-11782, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32227050

RESUMO

Bilge water from ships is regarded as a major pollutant in the marine environment. Bilge water exists in a stable oil-in-water (O/W) emulsion form. However, little is known about the O/W liquid-liquid (l-l) interface. Traditional bulk characterization approaches are not capable of capturing the chemical changes at the O/W l-l interface. Although surfactants are deemed essential in droplet formation, their roles in bilge water stabilization have not been fully revealed. We have utilized novel in situ chemical imaging tools including in situ scanning electron microscopy (SEM) and in situ time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study the evolving O/W interface using a NAVY bilge model for the first time. The droplet size distribution (DSD) does not change significantly without the addition of X-100 surfactants under static or rocking conditions. Both the oil components and the water clusters are shown to evolve over time at the O/W droplet interface by in situ liquid SIMS imaging. Of particular interest to droplet stabilization, the contribution of surfactants to the aged bilge droplets becomes more significant as the droplet size increases. The higher mass surfactant component does not appear on the droplet surface immediately while many lower mass surfactants are solvated inside the droplet. We have provided the first three-dimensional images of the evolving O/W interface and demonstrated that in situ surface chemical mapping is powerful enough to reveal the complex and dynamic l-l interface in the liquid state. Our observational insights suggest that surfactants are important in mediating droplet growth and facilitating effective separation of bilge water emulsion.

16.
Anal Chem ; 91(11): 7039-7046, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30950268

RESUMO

The understanding of ion solvation phenomena is of significance due to their influences on many important chemical, biological, and environmental processes. Mass spectrometry (MS)-based methods have been used to investigate this topic with molecular insights. As ion-solvent interactions are weak, ionization processes should be as soft as possible in order to retain solvation structures. An in situ liquid secondary ion MS (SIMS) approach developed in our group has been recently utilized in investigations of Li ion solvation in nonaqueous solution, and it detected a series of solvated Li ions. As traditionally SIMS has long been recognized as a hard ionization process with strong damage occurring at the sputtering interface, it is very interesting to study further how soft in situ liquid SIMS can be. In this work, we used halide ion hydration as an example to compare the ionization performance of the in situ liquid SIMS approach with regular electrospray ionization MS (ESI-MS). Results show that, although ESI has been recognized as a soft ionization method, nearly no solvated halide ions were detected by ESI-MS analysis, which acquired only strong signals of salt ion clusters. In contrast, in liquid SIMS spectra, a series of obvious hydrated halide ion compositions could be observed. We further evaluated the hydration numbers of halide ions and revealed the effects of the ion size, charge density, and polarizability on the hydration phenomenon. Our findings demonstrated that the in situ liquid SIMS approach is surprisingly soft, and it is expected to have very broad applications on investigation of various ion-solvent interactions and many other interesting chemical processes (e.g., the initial nucleation of nanoparticle formation) in liquid environment.

17.
Nat Mater ; 17(6): 514-518, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29736001

RESUMO

The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion1-4. Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys5,6. However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

18.
Chemistry ; 25(4): 993-996, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30462865

RESUMO

Fluorine has been recognized to selectively stabilize anatase titanium dioxide (TiO2 ) crystal facets; however, resolving its physical location at the nanometer scale remains empirically elusive. Here, we provide direct experimental evidence to reveal the spatial distribution of fluorine on single truncated anatase bipyramids (TABs) using nanoscale secondary ion mass spectrometry (NanoSIMS). Fluorine was found to preferentially adsorb on the (001) facet compared to the (101) facet of TABs. Moreover, NanoSIMS depth profiling exhibited a significantly different fluorine distribution between these two facets in the near-surface region, illustrating the essential role of lattice-doped fluorine in the anisotropic crystal growth of TABs.

19.
Analyst ; 144(8): 2498-2503, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30735206

RESUMO

Shewanella oneidensis MR-1 wild-type and a hyper-adhesive mutant CP2-1-S1 are used as model organisms and Cr(vi) is selected as a toxic chemical to study biofilm and toxic chemical interactions. Biofilms are cultured in a microfluidic device for in situ time-of-flight secondary ion mass spectrometry imaging. This approach is viable for studying biofilms' responses to antimicrobial resistance.


Assuntos
Biofilmes/efeitos dos fármacos , Dicromato de Potássio/toxicidade , Shewanella/fisiologia , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Shewanella/classificação , Espectrometria de Massa de Íon Secundário/métodos
20.
Environ Sci Technol ; 53(17): 10236-10245, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31361474

RESUMO

The effect of photochemical reaction time on glyoxal and hydrogen peroxide at the air-liquid (a-l) interface is investigated using in situ time-of-flight secondary ion mass spectrometry (ToF-SIMS) enabled by a system for analysis at the liquid vacuum interface (SALVI) microreactor. Carboxylic acids are formed mainly by reaction with hydroxyl radicals in the initial reactions. Oligomers, cluster ions, and water clusters formed due to longer photochemistry. Our results provide direct molecular evidence that water clusters are associated with proton transfer and the formation of oligomers and cluster ions at the a-l interface. The oligomer formation is facilitated by water cluster and cluster ion formation over time. Formation of higher m/z oligomers and cluster ions indicates the possibility of highly oxygenated organic components formation at the a-l interface. Furthermore, new chemical reaction pathways, such as surface organic cluster, hydration shell, and water cluster formation, are proposed based on SIMS spectral observations, and the existing understanding of glyoxal photochemistry is expanded. Our in situ findings verify that the a-l interfacial reactions are important pathways for aqueous secondary organic aerosol (aqSOA) formation.


Assuntos
Glioxal , Radical Hidroxila , Aerossóis , Fotoquímica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA